Delos problemi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tarihçe
  • 2 Çözümler
  • 3 Kaynakça
  • 4 Dış bağlantılar

Delos problemi

  • Alemannisch
  • العربية
  • Català
  • Čeština
  • Чӑвашла
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Eesti
  • فارسی
  • Suomi
  • Français
  • Gaeilge
  • עברית
  • Magyar
  • Հայերեն
  • İtaliano
  • 日本語
  • ქართული
  • 한국어
  • Lietuvių
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Slovenčina
  • Slovenščina
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bir birim küp (kenara = 1) ve iki katı hacme sahip diğer bir küp (kenarb = 3√2 = 1,2599210498948732… OEIS A002580)

Küpü iki katına çıkarma ya da Delos problemi, pergel ve cetvel kullanarak çözülemeyen üç geometrik problemden biri. Eski Mısırlı, Yunan ve Hint matematikçiler bu problem üzerinde çalışmışlardır.[1]

"Küpü iki katına çıkarmak", ayrıt uzunluğu s ve hacmi V olan bir küp kullanarak 2V hacminde yeni bir küp oluşturmak anlamına gelmektedir. Oluşturulacak olan küpün ayrıt uzunluğu s ⋅ 2 3 {\displaystyle s\cdot {\sqrt[{3}]{2}}} {\displaystyle s\cdot {\sqrt[{3}]{2}}} olduğundan ve bu ifadenin sayı doğrusu üzerindeki yeri tam olarak belirlenemeyeceğinden bu problem yalnız pergel ve cetvel kullanarak çözülememektedir.

Tarihçe

[değiştir | kaynağı değiştir]

Problemin adı, Apollon tarafından gönderilen felakete çare bulmak amacıyla Delfi'deki kahine başvuran Delos sakinlerine dayanmaktadır.[2] Plutarkhos'a göre,[3] Delosluların kahine başvurmalarının nedeni zamanın siyasal sorunlarıyla ilintiliydi. Kahin, köylülere düzgün bir küp biçimindeki Apollo sunağını iki katına çıkarmalarını önermiştir. Aldıkları yanıtı tuhaf bulan Deloslular bu kez Eflatun'a danışmış; kahinin önerisinin bir küpün hacmini iki katına çıkarmayı öngören problem olduğunu gören filozof, köylülere hırslarından uzaklaşmak için zamanlarını geometri ve matematikle uğraşarak geçirmeleri gerektiğini söylemiştir.[4]

Plutarkhos (Plut. 718ef VIII.ii)[5], Eflatun'un problemi Eudoxus ve Archytas'a da ulaştırdığını, problemi mekanik yöntemlerle çözmeye çalışan Menaechmus'u ise azarladığını belirtmiştir. Problemin MÖ 350'li yıllarda yazılmış olan Sisyphus adlı yapıtta çözümsüz olarak nitelendirilmesinin nedeninin bu olduğu düşünülmektedir.[6] Olaya ilişkin diğer bir rivayete göre ise, bu üç matematikçi de problemi çözmeyi başarmış; ancak çözümler çok soyut olduğundan uygulamaya konamamıştır.

Sakız Adalı Hipokrat'ın problemi, biri diğerinin iki katı uzunluğundaki iki doğru parçası arasındaki orana benzetmesi yeni bir çözüm umudu olarak görülmüştür.[7]

Pierre Wantzel, 1837'de pergel ve cetvel kullanarak çözülemeyeceğini gösterdiği üç problemden biri, küpün hacmini iki katına çıkarmaktır.[8]

Çözümler

[değiştir | kaynağı değiştir]

Menaechmus'un çözümü iki konik eğrinin kesişimini içermektedir. Küpü iki katına çıkarmayı hedef alan diğer yöntemler Diocles sisoidi, Nicomedes konkoidi ve Philo doğrusudur. Archytas MÖ 4. yüzyılda problemi üç boyutlu uzayda çözmeyi başarmıştır.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Lucye Guilbeau (1930). "The History of the Solution of the Cubic Equation", Mathematics News Letter 5 (4), ss. 8–12
  2. ^ "L. Zhmud The origin of the history of science in classical antiquity, s. 84". 27 Haziran 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Ekim 2010. 
  3. ^ Plutarkhos, De E apud Delphos 386.E.4
  4. ^ Plutarkhos, De genio Socratis 579.B
  5. ^ Quaestiones convivales, 28 Temmuz 2019 tarihinde kaynağından arşivlendi ,
  6. ^ Carl Werner Müller, Die Kurzdialoge der Appendix Platonica, Münih: Wilhelm Fink, 1975, s. 105-106
  7. ^ T. L. Heath A History of Greek Mathematics, 1. Cilt
  8. ^ L. Wantzel (1837). "Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas". Journal de Mathématiques Pures et Appliquées. 1 (2). ss. 366-372. 7 Haziran 2011 tarihinde kaynağından arşivlendi12 Kasım 2010. 

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • "Doubling the cube" [Küpü iki katına çıkarma] (İngilizce). 14 Mayıs 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Şubat 2021. 
  • "To Double a Cube -- The Solution of Archytas" [Archytas'ın çözümü] (İngilizce). 18 Temmuz 2008 tarihinde kaynağından arşivlendi. 
  • "What Is Wrong? (Delian Problem Solved)" [Delos problemi çözüldü (mü?)] (İngilizce). 29 Aralık 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Şubat 2021. 
  • g
  • t
  • d
Antik Yunan matematiği
Matematikçiler
(Zaman Çizelgesi)
  • Anaksagoras
  • Antemios
  • Apollonios
  • Arkhytas
  • Aristaios
  • Aristarkos
  • Arşimet
  • Autolykos
  • Bion
  • Boethius
  • Brison
  • Kallippos
  • Karpos
  • Kleomedes
  • Konon
  • Ktesibios
  • Demokritos
  • Dikaiarkhos
  • Diokles
  • Diophantos
  • Dinostratus
  • Dionisodoros
  • Domninus
  • Elealı Zenon
  • Eratosthenes
  • Eudemos
  • Eudoksos
  • Eutokios
  • Geminus
  • Heliodoros
  • İskenderiyeli Heron
  • Khrysippos
  • Hipparkhos
  • Hippasos
  • Hippias
  • Hipokrat
  • Hipatia
  • Hipsikles
  • İsidoros
  • Matematikçi Leo
  • Leon
  • Marinos
  • Melissa
  • Menaikhmos
  • Menelaos
  • Metrodoros
  • Nikomakhos
  • Nikomedes
  • Nikoteles
  • Oenopides
  • Euklides
  • Pappos
  • Perseus
  • Philolaos
  • Philon
  • Laodikyalı Philonides
  • Porphyrios
  • Poseidonios
  • Proklos
  • Batlamyus
  • Pisagor
  • Serenus
  • Simplikios
  • Sosigenes
  • Sporus
  • Thales
  • Theaitetos
  • Theano
  • Teodoros
  • Theodosios
  • İskenderiyeli Theon
  • Smirnalı Theon
  • Timaridas
  • Ksenokrates
  • Sidonlu Zenon
  • Zenodoros
Yapıtlar
  • Almagest
  • Arşimet Parşömeni
  • Arithmetika
  • Konikler (Apollonius)
  • Katoptrik (Yansımalar)
  • Data (Öklid)
  • Elemanlar (Öklid)
  • Bir Çemberin Ölçümü
  • Konikler ve Sferoidler Üzerine
  • Büyüklükler ve Uzaklıklar Üzerine (Aristarkhos)
  • Büyüklükler ve Uzaklıklar Üzerine (Hipparkhos)
  • Hareketli Küre Üzerine (Autolykos)
  • Öklid'in Optiği
  • Sarmallar Üzerine
  • Küre ve Silindir Üzerine
  • Ostomachion (Syntomachion)
  • Planisphaerium
  • Sphaerics
  • Parabolün Dörtgenleştirilmesi
  • Kum Sayacı
  • Sonsuz Küçükler Hesabı
Merkezler
Platon Akademisi · Kirene · İskenderiye Kütüphanesi
Etkilendikleri
Babil matematiği · Eski Mısır matematiği
Etkiledikleri
Avrupa matematiği · Hint matematiği · Orta Çağ İslam matematiği
Problemler
Apollonios problemi · Daireyi kareleştirme · Küpü iki katına çıkarma · Açıyı üçe bölme
Kavramlar/Tanımlar
  • Apollonius çemberi
  • Diyofantus denklemi
  • Çevrel çember
  • Eşölçülebilirlik
  • Orantılılık ilkesi
  • Altın oran
  • Yunan rakamları
  • Bir üçgenin iç ve dış çemberleri
  • Tükenme yöntemi
  • Paralellik postülatı
  • Platonik katılar
  • Hipokrat ayı
  • Hippias kuadratiksi
  • Düzgün çokgen
  • Cetvel ve pergelle yapılan çizimler
  • Üçgen merkezi
Bulgular
  • Açıortay teoremi
  • Dış açı teoremi
  • Öklid algoritması
  • Öklid teoremi
  • Geometrik ortalama teoremi
  • Yunan geometrik cebiri
  • Menteşe teoremi
  • Çevre açı teoremi
  • Kesişme teoremi
  • Pons asinorum
  • Pisagor teoremi
  • Thales teoremi
  • Gnomon teoremi
  • Apollonius teoremi
  • Aristarkus eşitsizliği
  • Crossbar (Pasch) teoremi
  • Heron formülü
  • İrrasyonel sayılar
  • Menelaus teoremi
  • Pappus'un alan teoremi
  • Batlamyus eşitsizliği
  • Batlamyus kirişler tablosu
  • Batlamyus teoremi
  • Theodorus sarmalı
Antik Yunan matematikçilerinin zaman çizelgesi
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNE: XX5550936
  • BNF: cb17706466t (data)
  • GND: 4149044-7
  • LCCN: sh85034645
  • NLI: 987007535952805171
  • SUDOC: 187227888
"https://tr.wikipedia.org/w/index.php?title=Delos_problemi&oldid=36049856" sayfasından alınmıştır
Kategoriler:
  • Öklid geometrisi
  • Matematiksel problemler
  • Antik Delos
  • Geometri tarihi
  • Cebirsel sayılar
Gizli kategoriler:
  • BNE tanımlayıcısı olan Vikipedi maddeleri
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • SUDOC tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 19.57, 20 Eylül 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Delos problemi
Konu ekle