Gamma dağılımı - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Karakteristikler
    • 1.1 Olasılık yoğunluk fonksiyonu
    • 1.2 Yığmalı dağılım fonksiyonu
  • 2 Özellikler
    • 2.1 Toplama
    • 2.2 Ölçekleme
    • 2.3 Üstel ailesi
    • 2.4 Enformasyon entropisi
    • 2.5 Kullback–Leibler ayrılımı
    • 2.6 Laplace dönüşümü
  • 3 Parametre tahmini
    • 3.1 Maksimum olabilirlilik tahmini
    • 3.2 Bayes tipi minimum ortalama-kareli hata
  • 4 Gamma dağılım gösteren rassal değişken üretimi
  • 5 İlişkili dağılımlar
    • 5.1 Özel dağılımlar
    • 5.2 Diğerleri
  • 6 Kaynakça

Gamma dağılımı

  • العربية
  • Azərbaycanca
  • Беларуская
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • English
  • Español
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Magyar
  • İtaliano
  • 日本語
  • ಕನ್ನಡ
  • 한국어
  • Nederlands
  • Polski
  • Português
  • Русский
  • Simple English
  • Slovenčina
  • Slovenščina
  • Sunda
  • Svenska
  • Українська
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Gamma
Olasılık yoğunluk fonksiyonu
Gamma dağılımları için olasılık yoğunluk fonksiyonlari grafiği
Yığmalı dağılım fonksiyonu
Gamma dağılımları için yığmalı dağılım grafiği
Parametreler k > 0 {\displaystyle k>0\,} {\displaystyle k>0\,} şekil (reel)
θ > 0 {\displaystyle \theta >0\,} {\displaystyle \theta >0\,} ölçek (reel)
Destek x   [ 0 ; ∞ ) {\displaystyle x\ [0;\infty )\!} {\displaystyle x\ [0;\infty )\!}
Olasılık yoğunluk fonksiyonu (OYF) x k − 1 exp ⁡ ( − x / θ ) Γ ( k ) θ k {\displaystyle x^{k-1}{\frac {\exp {\left(-x/\theta \right)}}{\Gamma (k)\,\theta ^{k}}}\,\!} {\displaystyle x^{k-1}{\frac {\exp {\left(-x/\theta \right)}}{\Gamma (k)\,\theta ^{k}}}\,\!}
Birikimli dağılım fonksiyonu (YDF) γ ( k , x / θ ) Γ ( k ) {\displaystyle {\frac {\gamma (k,x/\theta )}{\Gamma (k)}}\,\!} {\displaystyle {\frac {\gamma (k,x/\theta )}{\Gamma (k)}}\,\!}
Ortalama k θ {\displaystyle k\theta \,\!} {\displaystyle k\theta \,\!}
Medyan basit kapalı form yok
Mod ( k − 1 ) θ  for  k ≥ 1 {\displaystyle (k-1)\theta {\text{ for }}k\geq 1\,\!} {\displaystyle (k-1)\theta {\text{ for }}k\geq 1\,\!}
Varyans k θ 2 {\displaystyle k\theta ^{2}\,\!} {\displaystyle k\theta ^{2}\,\!}
Çarpıklık 2 k {\displaystyle {\frac {2}{\sqrt {k}}}\,\!} {\displaystyle {\frac {2}{\sqrt {k}}}\,\!}
Fazladan basıklık 6 k {\displaystyle {\frac {6}{k}}\,\!} {\displaystyle {\frac {6}{k}}\,\!}
Entropi k + ln ⁡ θ + ln ⁡ Γ ( k ) {\displaystyle k+\ln \theta +\ln \Gamma (k)\!} {\displaystyle k+\ln \theta +\ln \Gamma (k)\!}
+ ( 1 − k ) ψ ( k ) {\displaystyle +(1-k)\psi (k)\!} {\displaystyle +(1-k)\psi (k)\!}
Moment üreten fonksiyon (mf) ( 1 − θ t ) − k  for  t < 1 / θ {\displaystyle (1-\theta \,t)^{-k}{\text{ for }}t<1/\theta \,\!} {\displaystyle (1-\theta \,t)^{-k}{\text{ for }}t<1/\theta \,\!}
Karakteristik fonksiyon ( 1 − θ i t ) − k {\displaystyle (1-\theta \,i\,t)^{-k}\,\!} {\displaystyle (1-\theta \,i\,t)^{-k}\,\!}

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre 1 θ {\displaystyle {\frac {1}{\theta }}} {\displaystyle {\frac {1}{\theta }}} olur.

Karakteristikler

[değiştir | kaynağı değiştir]

Bir rassal değişken olan Xin θ ölçek parametresi ve k şekil parametresi ile tanımlanmış bir gamma dağılımı ile ifade edilmesi için şu notasyon kullanılır:

X ∼ Γ ( k , θ ) v e y a X ∼ Gamma ( k , θ ) . {\displaystyle X\sim \Gamma (k,\theta )\,\,\mathrm {veya} \,\,X\sim {\textrm {Gamma}}(k,\theta ).} {\displaystyle X\sim \Gamma (k,\theta )\,\,\mathrm {veya} \,\,X\sim {\textrm {Gamma}}(k,\theta ).}

Olasılık yoğunluk fonksiyonu

[değiştir | kaynağı değiştir]

Gamma dağılımının olasılık yoğunluk fonksiyonu şu şekilde bir gamma fonksiyonu ile ifade edilebilir:

f ( x ; k , θ ) = x k − 1 e − x / θ θ k Γ ( k )   f o r   x > 0 a n d k , θ > 0. {\displaystyle f(x;k,\theta )=x^{k-1}{\frac {e^{-x/\theta }}{\theta ^{k}\,\Gamma (k)}}\ \mathrm {for} \ x>0\,\,\mathrm {and} \,\,k,\theta >0.} {\displaystyle f(x;k,\theta )=x^{k-1}{\frac {e^{-x/\theta }}{\theta ^{k}\,\Gamma (k)}}\ \mathrm {for} \ x>0\,\,\mathrm {and} \,\,k,\theta >0.}

Bu çeşit parametrelerle ifade edilme yukarıda verilen bilgi kutusunda ve grafiklerde kullanılmıştır.

Alternatif bir şekilde, gamma dağılımının olasılık yoğunluk fonksiyonu bir şekil parametresi α = k {\displaystyle \alpha =k} {\displaystyle \alpha =k} ile ölcek parametresinin tersi olan oran parametresi β = 1 / θ {\displaystyle \beta =1/\theta } {\displaystyle \beta =1/\theta } kullanılarak şöyle elde edilir:

g ( x ; α , β ) = x α − 1 β α e − β x Γ ( α )   f o r   x > 0 . {\displaystyle g(x;\alpha ,\beta )=x^{\alpha -1}{\frac {\beta ^{\alpha }\,e^{-\beta \,x}}{\Gamma (\alpha )}}\ \mathrm {for} \ x>0\,\!.} {\displaystyle g(x;\alpha ,\beta )=x^{\alpha -1}{\frac {\beta ^{\alpha }\,e^{-\beta \,x}}{\Gamma (\alpha )}}\ \mathrm {for} \ x>0\,\!.}
Eğer α {\displaystyle \alpha } {\displaystyle \alpha } bir pozitif tam sayı ise, o halde
Γ ( α ) = ( α − 1 ) ! {\displaystyle {\Gamma (\alpha )}=(\alpha -1)!} {\displaystyle {\Gamma (\alpha )}=(\alpha -1)!}

Olasılık yoğunluk fonksiyonu her iki şekli de istatistikçiler tarafından yaygın olarak kullanılmaktadır.

Yığmalı dağılım fonksiyonu

[değiştir | kaynağı değiştir]

Yığmalı dağılım fonksiyonu bir tanzim edilmiş gamma fonksiyonudur ve bir tamamlanmamış gamma fonksiyonu şeklinde şöyle ifade edilir:

F ( x ; k , θ ) = ∫ 0 x f ( u ; k , θ ) d u = γ ( k , x / θ ) Γ ( k ) {\displaystyle F(x;k,\theta )=\int _{0}^{x}f(u;k,\theta )\,du={\frac {\gamma (k,x/\theta )}{\Gamma (k)}}\,\!} {\displaystyle F(x;k,\theta )=\int _{0}^{x}f(u;k,\theta )\,du={\frac {\gamma (k,x/\theta )}{\Gamma (k)}}\,\!}

Özellikler

[değiştir | kaynağı değiştir]

Toplama

[değiştir | kaynağı değiştir]

Eğer i = 1, 2, ..., N için rassal değişken Xiin dağılımı bir Γ(αi, β) olursa; o halde

∑ i = 1 N X i ∼ Γ ( ∑ i = 1 N α i , β ) {\displaystyle \sum _{i=1}^{N}X_{i}\sim \Gamma \left(\sum _{i=1}^{N}\alpha _{i},\beta \right)\,\!} {\displaystyle \sum _{i=1}^{N}X_{i}\sim \Gamma \left(\sum _{i=1}^{N}\alpha _{i},\beta \right)\,\!}

Ancak bütün Γ(αi, β) istatistiksel bağımsız olması gerekir.

Gamma dağılımı sonsuz bölünebilirlik özelliği gösterir.

Ölçekleme

[değiştir | kaynağı değiştir]

Herhangi bir t için tX bir Γ(k, tθ) dağılımı gösterir; bu ifade θnın bir ölçek parametresi olduğunu gösterir.

Üstel ailesi

[değiştir | kaynağı değiştir]

Gamma dağılımı iki-parametreli üstel ailesinin bir üyesidir ve doğal parametreler değerleri k − 1 {\displaystyle k-1} {\displaystyle k-1} ve − 1 / θ {\displaystyle -1/\theta } {\displaystyle -1/\theta }; ve doğal istatistikleri X {\displaystyle X} {\displaystyle X} ve ln ⁡ ( X ) {\displaystyle \ln(X)} {\displaystyle \ln(X)} olur.

Enformasyon entropisi

[değiştir | kaynağı değiştir]

Enformasyon entropisi şöyle verilir:

− 1 θ k Γ ( k ) ∫ 0 ∞ x k − 1 e x / θ [ ( k − 1 ) ln ⁡ x − x / θ − k ln ⁡ θ − ln ⁡ Γ ( k ) ] d x {\displaystyle {\frac {-1}{\theta ^{k}\Gamma (k)}}\int _{0}^{\infty }{\frac {x^{k-1}}{e^{x/\theta }}}\left[(k-1)\ln x-x/\theta -k\ln \theta -\ln \Gamma (k)\right]\,dx\!} {\displaystyle {\frac {-1}{\theta ^{k}\Gamma (k)}}\int _{0}^{\infty }{\frac {x^{k-1}}{e^{x/\theta }}}\left[(k-1)\ln x-x/\theta -k\ln \theta -\ln \Gamma (k)\right]\,dx\!}
= − [ ( k − 1 ) ( ln ⁡ θ + ψ ( k ) ) − k − k ln ⁡ θ − ln ⁡ Γ ( k ) ] {\displaystyle =-\left[(k-1)(\ln \theta +\psi (k))-k-k\ln \theta -\ln \Gamma (k)\right]\!} {\displaystyle =-\left[(k-1)(\ln \theta +\psi (k))-k-k\ln \theta -\ln \Gamma (k)\right]\!}
= k + ln ⁡ θ + ln ⁡ Γ ( k ) + ( 1 − k ) ψ ( k ) {\displaystyle =k+\ln \theta +\ln \Gamma (k)+(1-k)\psi (k)\!} {\displaystyle =k+\ln \theta +\ln \Gamma (k)+(1-k)\psi (k)\!}

burada ψ(k) bir digama fonksiyonu olur.

Kullback–Leibler ayrılımı

[değiştir | kaynağı değiştir]

'Gerçek' dağılım olan Γ(α0, β0) ile yaklaşık fonksiyon olan Γ(α, β) arasındaki yönlendirilmiş Kullback-Leibler ayrılması şu fonksiyonla verilir:

D K L ( α , β | | α 0 , β 0 ) = log ⁡ ( Γ ( α 0 ) β 0 α 0 Γ ( α ) β α 0 ) + ( α − α 0 ) ψ ( α ) + α β − β 0 β 0 {\displaystyle D_{\mathrm {KL} }(\alpha ,\beta ||\alpha _{0},\beta _{0})=\log \left({\frac {\Gamma ({\alpha _{0}})\beta _{0}^{\alpha _{0}}}{\Gamma (\alpha )\beta ^{\alpha _{0}}}}\right)+(\alpha -{\alpha _{0}})\psi (\alpha )+\alpha {\frac {\beta -\beta _{0}}{\beta _{0}}}} {\displaystyle D_{\mathrm {KL} }(\alpha ,\beta ||\alpha _{0},\beta _{0})=\log \left({\frac {\Gamma ({\alpha _{0}})\beta _{0}^{\alpha _{0}}}{\Gamma (\alpha )\beta ^{\alpha _{0}}}}\right)+(\alpha -{\alpha _{0}})\psi (\alpha )+\alpha {\frac {\beta -\beta _{0}}{\beta _{0}}}}

Laplace dönüşümü

[değiştir | kaynağı değiştir]

Gamma dağılımının Laplace dönüşümü şudur:

F ( s ) = β α ( s + β ) α . {\displaystyle F(s)={\frac {\beta ^{\alpha }}{(s+\beta )^{\alpha }}}.} {\displaystyle F(s)={\frac {\beta ^{\alpha }}{(s+\beta )^{\alpha }}}.}

Parametre tahmini

[değiştir | kaynağı değiştir]
Gama Olasılık Dağılımının 3B Gösterimi. Her Katman, 1,2,3,4,5 ve 6'ya eşit olan θ {\displaystyle \theta } 'nın farklı bir değeri içindir.

Maksimum olabilirlilik tahmini

[değiştir | kaynağı değiştir]

Birbirlerinden bağımsız ve aynı dağılım gösteren N sayıda gözlem, ( x 1 , … , x N ) {\displaystyle (x_{1},\ldots ,x_{N})} {\displaystyle (x_{1},\ldots ,x_{N})}, için olabilirlik fonksiyonu sudur:

L ( θ ) = ∏ i = 1 N f ( x i ; k , θ ) {\displaystyle L(\theta )=\prod _{i=1}^{N}f(x_{i};k,\theta )\,\!} {\displaystyle L(\theta )=\prod _{i=1}^{N}f(x_{i};k,\theta )\,\!}

Bundan bir log-olabilirlilik fonksiyonu türetilebiliriz:

ℓ ( θ ) = ( k − 1 ) ∑ i = 1 N ln ⁡ ( x i ) − ∑ x i / θ − N k ln ⁡ ( θ ) − N ln ⁡ Γ ( k ) . {\displaystyle \ell (\theta )=(k-1)\sum _{i=1}^{N}\ln {(x_{i})}-\sum x_{i}/\theta -Nk\ln {(\theta )}-N\ln {\Gamma (k)}.} {\displaystyle \ell (\theta )=(k-1)\sum _{i=1}^{N}\ln {(x_{i})}-\sum x_{i}/\theta -Nk\ln {(\theta )}-N\ln {\Gamma (k)}.}

Bunun θ {\displaystyle \theta } {\displaystyle \theta }'ya gore maksimim değerini bulmak için bu log-olabilirlilik fonksiyonunun birinci türevini alıp sıfıra eşitlersek, θ parametresi için maksimum-olabilirlik kestirimini buluruz:

θ ^ = 1 k N ∑ i = 1 N x i . {\displaystyle {\hat {\theta }}={\frac {1}{kN}}\sum _{i=1}^{N}x_{i}.\,\!} {\displaystyle {\hat {\theta }}={\frac {1}{kN}}\sum _{i=1}^{N}x_{i}.\,\!}

Bunu tekrara log-degisebilirlilik fonksiyonuna koyarsak, elde edilen ifade su olur:

ℓ = ( k − 1 ) ∑ i = 1 N ln ⁡ ( x i ) − N k − N k ln ⁡ ( ∑ x i k N ) − N ln ⁡ ( Γ ( k ) ) . {\displaystyle \ell =(k-1)\sum _{i=1}^{N}\ln {(x_{i})}-Nk-Nk\ln {\left({\frac {\sum x_{i}}{kN}}\right)}-N\ln {(\Gamma (k))}.\,\!} {\displaystyle \ell =(k-1)\sum _{i=1}^{N}\ln {(x_{i})}-Nk-Nk\ln {\left({\frac {\sum x_{i}}{kN}}\right)}-N\ln {(\Gamma (k))}.\,\!}

Bunu k'ye gore maksimumunu bulmak için birinci türevini alırız ve bunu sıfıra eşitleriz. Sonuç şudur:

ln ⁡ ( k ) − ψ ( k ) = ln ⁡ ( 1 N ∑ i = 1 N x i ) − 1 N ∑ i = 1 N ln ⁡ ( x i ) {\displaystyle \ln {(k)}-\psi (k)=\ln {\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)}-{\frac {1}{N}}\sum _{i=1}^{N}\ln {(x_{i})}\,\!} {\displaystyle \ln {(k)}-\psi (k)=\ln {\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)}-{\frac {1}{N}}\sum _{i=1}^{N}\ln {(x_{i})}\,\!}

Burada

ψ ( k ) = Γ ′ ( k ) Γ ( k ) {\displaystyle \psi (k)={\frac {\Gamma '(k)}{\Gamma (k)}}\!} {\displaystyle \psi (k)={\frac {\Gamma '(k)}{\Gamma (k)}}\!}

olup bir digamam fonksiyonudur.

k için kapali-sekilli bir çözüm bulunmamaktadır. Bu fonksiyon numerik olarak, hesaplamaya uygun davranış gösterir ve bunun için bir numerik çözüm istenirse, örneğin numerik Newton Yöntemi, sonuçlar yeterli dakik olur. Bu numerik çözümler için ilk değer ya "momentler metodu" kullanılarak bulunur ya da su yaklaşım kullanılabilir:

ln ⁡ ( k ) − ψ ( k ) ≈ 1 k ( 1 2 + 1 12 k + 2 ) . {\displaystyle \ln(k)-\psi (k)\approx {\frac {1}{k}}\left({\frac {1}{2}}+{\frac {1}{12k+2}}\right).\,\!} {\displaystyle \ln(k)-\psi (k)\approx {\frac {1}{k}}\left({\frac {1}{2}}+{\frac {1}{12k+2}}\right).\,\!}

Eğer şu ifadeyi kullanırsak

s = ln ⁡ ( 1 N ∑ i = 1 N x i ) − 1 N ∑ i = 1 N ln ⁡ ( x i ) , {\displaystyle s=\ln {\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)}-{\frac {1}{N}}\sum _{i=1}^{N}\ln {(x_{i})},\,\!} {\displaystyle s=\ln {\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)}-{\frac {1}{N}}\sum _{i=1}^{N}\ln {(x_{i})},\,\!}

k yaklaşık şu değerdedir:

k ≈ 3 − s + ( s − 3 ) 2 + 24 s 12 s {\displaystyle k\approx {\frac {3-s+{\sqrt {(s-3)^{2}+24s}}}{12s}}} {\displaystyle k\approx {\frac {3-s+{\sqrt {(s-3)^{2}+24s}}}{12s}}}

Bu genellikle gerçek değerden +/- %1,5 hatalı olabileceği bulunmuştur. Bu ilk tahminin Newton-Raphson yöntemi için iyileştirilmesi Choi ve Wette (1969) şöyle verilmiştir:

k ← k − ln ⁡ k − ψ ( k ) − s 1 / k − ψ ′ ( k ) {\displaystyle k\leftarrow k-{\frac {\ln k-\psi \left(k\right)-s}{1/k-\psi '\left(k\right)}}} {\displaystyle k\leftarrow k-{\frac {\ln k-\psi \left(k\right)-s}{1/k-\psi '\left(k\right)}}}

burada ψ ′ ( ⋅ ) {\displaystyle \psi '\left(\cdot \right)} {\displaystyle \psi '\left(\cdot \right)} trigamma fonksiyonunu (yani digamma fonksiyonunun birinci türevini) ifade eder.

Digamma ve trigamma fonksiyonlarını çok dakiklikle hesaplamak güç olabilir. Fakat, su verilen yaklaşım formülleri kullanarak birkaç önemli ondalikli sayıya kadar iyi yaklaşım sayıları bulmak imkânı vardır:

ψ ( k ) = { ln ⁡ ( k ) − ( 1 + ( 1 − ( 1 / 10 − 1 / ( 21 k 2 ) ) / k 2 ) / ( 6 k ) ) / ( 2 k ) , k ≥ 8 ψ ( k + 1 ) − 1 / k , k < 8 {\displaystyle \psi \left(k\right)={\begin{cases}\ln(k)-(1+(1-(1/10-1/(21k^{2}))/k^{2})/(6k))/(2k),\quad k\geq 8\\\psi \left(k+1\right)-1/k,\quad k<8\end{cases}}} {\displaystyle \psi \left(k\right)={\begin{cases}\ln(k)-(1+(1-(1/10-1/(21k^{2}))/k^{2})/(6k))/(2k),\quad k\geq 8\\\psi \left(k+1\right)-1/k,\quad k<8\end{cases}}}

ve

ψ ′ ( k ) = { ( 1 + ( 1 + ( 1 − ( 1 / 5 − 1 / ( 7 k 2 ) ) / k 2 ) / ( 3 k ) ) / ( 2 k ) ) / k , k ≥ 8 , ψ ′ ( k + 1 ) + 1 / k 2 , k < 8. {\displaystyle \psi '\left(k\right)={\begin{cases}(1+(1+(1-(1/5-1/(7k^{2}))/k^{2})/(3k))/(2k))/k,\quad k\geq 8,\\\psi '\left(k+1\right)+1/k^{2},\quad k<8.\end{cases}}} {\displaystyle \psi '\left(k\right)={\begin{cases}(1+(1+(1-(1/5-1/(7k^{2}))/k^{2})/(3k))/(2k))/k,\quad k\geq 8,\\\psi '\left(k+1\right)+1/k^{2},\quad k<8.\end{cases}}}

Ayrıntılar için bakiniz Choi ve Wette (1969).

Bayes tipi minimum ortalama-kareli hata

[değiştir | kaynağı değiştir]

Bilinen değerde k ve bilinmeyen değerde ' θ {\displaystyle \theta } {\displaystyle \theta }, için theta için sonrasal olasılık yoğunluk fonksiyonu ( θ {\displaystyle \theta } {\displaystyle \theta } için standart ölçek-değişilmez öncel kullanarak) su elde edilir:

P ( θ | k , x 1 , . . . , x N ) ∝ 1 / θ ∏ i = 1 N f ( x i ; k , θ ) . {\displaystyle P(\theta |k,x_{1},...,x_{N})\propto 1/\theta \prod _{i=1}^{N}f(x_{i};k,\theta ).\,\!} {\displaystyle P(\theta |k,x_{1},...,x_{N})\propto 1/\theta \prod _{i=1}^{N}f(x_{i};k,\theta ).\,\!}

Su ifade verilsin

y ≡ ∑ i = 1 N x i , P ( θ | k , x 1 , … , x N ) = C ( x i ) θ − N k − 1 e − y / θ . {\displaystyle y\equiv \sum _{i=1}^{N}x_{i},\qquad P(\theta |k,x_{1},\dots ,x_{N})=C(x_{i})\theta ^{-Nk-1}e^{-y/\theta }.\!} {\displaystyle y\equiv \sum _{i=1}^{N}x_{i},\qquad P(\theta |k,x_{1},\dots ,x_{N})=C(x_{i})\theta ^{-Nk-1}e^{-y/\theta }.\!}

Bunun θ entegrasyonu değişkenlerin değiştirilmesi yöntemi kullanılarak mümkün olur. Bunun sonucunda 1/θ ifadesinin

α = N k ,     β = y {\displaystyle \scriptstyle \alpha =Nk,\ \ \beta =y} {\displaystyle \scriptstyle \alpha =Nk,\ \ \beta =y}

parametreleri olan bir gamma dağılımı gösterdiği ortaya çıkartılır.

∫ 0 ∞ θ − N k − 1 + m e − y / θ d θ = ∫ 0 ∞ x N k − 1 − m e − x y d x = y − ( N k − m ) Γ ( N k − m ) . {\displaystyle \int _{0}^{\infty }\theta ^{-Nk-1+m}e^{-y/\theta }\,d\theta =\int _{0}^{\infty }x^{Nk-1-m}e^{-xy}\,dx=y^{-(Nk-m)}\Gamma (Nk-m).\!} {\displaystyle \int _{0}^{\infty }\theta ^{-Nk-1+m}e^{-y/\theta }\,d\theta =\int _{0}^{\infty }x^{Nk-1-m}e^{-xy}\,dx=y^{-(Nk-m)}\Gamma (Nk-m).\!}

Momentler (m ile m = 0) orantısı alınarak hesaplanabilir:

E ( x m ) = Γ ( N k − m ) Γ ( N k ) y m , {\displaystyle E(x^{m})={\frac {\Gamma (Nk-m)}{\Gamma (Nk)}}y^{m},\!} {\displaystyle E(x^{m})={\frac {\Gamma (Nk-m)}{\Gamma (Nk)}}y^{m},\!}

Buna göre theta'nin sonsal dağılımının ortalama +/- standart sapma kestiriminin şöyle olur:

y N k − 1 {\displaystyle {\frac {y}{Nk-1}}} {\displaystyle {\frac {y}{Nk-1}}} +/- y 2 ( N k − 1 ) 2 ( N k − 2 ) . {\displaystyle {\frac {y^{2}}{(Nk-1)^{2}(Nk-2)}}.} {\displaystyle {\frac {y^{2}}{(Nk-1)^{2}(Nk-2)}}.}

Gamma dağılım gösteren rassal değişken üretimi

[değiştir | kaynağı değiştir]

İlişkili dağılımlar

[değiştir | kaynağı değiştir]

Özel dağılımlar

[değiştir | kaynağı değiştir]
  • X ∼ S k e w L o g i s t i c ( θ ) {\displaystyle X\sim \mathrm {SkewLogistic} (\theta )\,} {\displaystyle X\sim \mathrm {SkewLogistic} (\theta )\,}, then l o g ( 1 + e − X ) ∼ Γ ( 1 , θ ) {\displaystyle \mathrm {log} (1+e^{-X})\sim \Gamma (1,\theta )\,} {\displaystyle \mathrm {log} (1+e^{-X})\sim \Gamma (1,\theta )\,}

-->

Diğerleri

[değiştir | kaynağı değiştir]
  • Eğer X bir Γ(k, θ) dağılımı gösterirse 1/X k ve θ−1

parametreleri olan bir ters-gamma dagilimi gösterir.

Kaynakça

[değiştir | kaynağı değiştir]
  • R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics, 4th ed. New York: Macmillan, 1978. (Bak Section 3.3.)
  • Eric W. Weisstein, Gamma distribution (MathWorld)
  • 23 Şubat 2008 tarihinde Wayback Machine sitesinde [https://web.archive.org/web/20080223135214/http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm arşivlendi.] Engineering Statistics El Kilavuzu.
  • S. C. Choi and R. Wette. (1969) Maximum Likelihood Estimation of the Parameters of the Gamma Distribution and Their Bias, Technometrics, 11(4) 683-69
  • g
  • t
  • d
Olasılık dağılımları
Ayrık tek değişkenli ve sonlu destekli

Ayrık tekdüze · Benford · Bernoulli · Binom · Kategorik · Hipergeometrik · Rademacher · Zipf · Zipf-Mandelbrot

Ayrık tek değişkenli ve sonsuzluk
destekli

Boltzmann · Conway-Maxwell-Poisson · Bileşik Poisson · Ayrık faz tipi · Genişletilmiş negatif binom · Gauss-Kuzmin · Geometrik · Logaritmalı · Negatif binom · Parabolik fraktal · Poisson · Skellam · Yule-Simon · Zeta

Sürekli tek değişkenli ve
[0,1] gibi bir sınırlı aralıkta destekli

Beta · Irwin-Hall · Kumaraswamy · Kabartılmış kosinus · Üçgensel · U-kuadratik · Sürekli tekdüze · Wigner yarımdaire

Sürekli tek değişkenli ve
genellikle (0,∞) yarı-sonsuz aralığında
destekli

Beta prime · Bose–Einstein · Burr · Ki-kare · Coxian · Erlang · Üstel · F-dağılımı · Fermi-Dirac · Katlanmış normal · Fréchet · Gamma · Genelleştirilmiş uçsal değer · Genelleştirilmiş ters Gauss-tipi · Yarı-logistik · Yarı-normal · Hotelling'in T-kare · Hiper-üstel · Hipo-üstel · Ters ki-kare (Ölçeklenmiş ters ki-kare) · Ters Gauss-tipi · Ters gamma · Lévy · Log-normal · Log-logistik · Maxwell-Boltzmann · Maxwell hız · Nakagami · Merkezsel olmayan ki-kare · Pareto · Faz-tipi · Rayleigh · Relativistik Breit–Wigner · Rice · Rosin–Rammler · Kaydırılmış Gompertz · Kesilmiş normal · 2.tip Gumbel · Weibull · Wilks'in lambda

Sürekli tek değişkenli ve
(-∞,∞) arasındaki tüm reel doğru
üzerinde destekli

Cauchy · Uçsal değer · Üstel güç · Fisher'in z  · Genelleştirilmiş hiperbolik  · Gumbel · Hiperbolik sekant · Landau · Laplace · Lévy çarpık alfa-durağan · Logistik · Normal (Gauss tipi) · Normal ters Gauss-tipi · Çarpık normal · Student'in t · 1.tip Gumbel · Varyans-Gamma · Voigt

Çok değişkenli (birleşik)

Ayrık: Ewens · Beta-binom · Multinom · Çokdeğişirli Polya
Sürekli: Dirichlet · Genelleştirilmiş Dirichlet · Çokdeğişirli normal · Çokdeğişirli Student  · normal-ölçeklenmiş ters gamma  · Normal-gamma
Matris-değerli: Ters-Wishart · Matris normal · Wishart

Yönsel, Bozulmuş ve singuler

Yönsel: Kent  · von Mises · von Mises–Fisher
Bozulmuş: Ayrık bozulmuş ·
Dirac delta fonksiyonu
Singuler: Cantor ·

Aileler

Üstel · Doğasal üstel · Konum-ölçekli · Maksimum entropi · Pearson · Tweedie

"https://tr.wikipedia.org/w/index.php?title=Gamma_dağılımı&oldid=36352184" sayfasından alınmıştır
Kategoriler:
  • Sürekli olasılık dağılımları
  • Factöryel ve binom konuları
  • Sağkalım analizi
Gizli kategori:
  • Webarşiv şablonu wayback bağlantıları
  • Sayfa en son 21.37, 6 Kasım 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Gamma dağılımı
Konu ekle