Öznitelik (makine öğrenmesi) - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Sınıflandırma
  • 2 Kaynakça

Öznitelik (makine öğrenmesi)

  • العربية
  • Català
  • Deutsch
  • English
  • Español
  • فارسی
  • Suomi
  • İtaliano
  • 日本語
  • 한국어
  • Русский
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Makine öğrenmesi ve
veri madenciliği
Problemler
  • Sınıflandırma
  • Kümeleme
  • Regresyon
  • Anomali tespiti
  • Association rules
  • Pekiştirmeli öğrenme
  • Yapılandırılmış tahmin
  • Öznitelik mühendisliği
  • Öznitelik öğrenmesi
  • Öznitelik çıkarımı
  • Online öğrenme
  • Yarı-gözetimli öğrenme
  • Gözetimsiz öğrenme
  • Sıralama öğrenme
  • Gramer Tümevarımı
Gözetimli öğrenme
  • Karar ağacı
  • Birlik öğrenmesi
  • k-YK
  • Doğrusal regresyon
  • Naive Bayes
  • Sinir ağları
  • Lojistik regresyon
  • Relevance vector machine (RVM)
  • Support vector machine (SVM)
  • Rastgele orman
Kümeleme
  • BIRCH
  • Hiyerarşik
  • k-means
  • Beklenti maksimizasyon

  • DBSCAN
  • OPTICS
  • Mean-shift
Boyut indirgeme
  • Faktör analizi
  • CCA
  • ICA
  • LDA
  • NMF
  • PCA
  • t-SNE
Yapılandırılmış tahmin
  • Grafiksel modeller (Bayes ağları, CRF, HMM)
Anomali tespiti
  • k-NN
  • Local outlier factor
Sinir ağları
  • Perseptron
  • Otokodlayıcı
  • Derin öğrenme
  • RNN
  • LSTM
  • Kısıtlı Boltzmann makinesi
  • SOM
  • Kıvrımlı sinir ağları
Pekiştirmeli öğrenme
  • Q-Learning
  • SARSA
  • Temporal Difference (TD)
Teori
  • Bias-variance ikilemi
  • Hesaplamalı öğrenme teorisi
  • Empirik risk minimizasyonu
  • Occam learning
  • PAC learning
  • İstatistiki öğrenme teorisi
  • VC theory
Konferanslar ve dergiler
  • NIPS
  • ICML
  • ML
  • JMLR
  • ArXiv:cs.LG
  • g
  • t
  • d

Öznitelik, makine öğrenmesi ve örüntü tanıma alanlarında, gözlemlenen bir olgunun ölçülebilir bir niteliğidir.[1] Anlaşılır, ayırt edici ve bağımsız özellikler seçmek etkili örüntü tanıma, sınıflandırma ve regresyon algoritmaları için kritik bir adımdır. Özellikler genellikle sayısaldır ancak sentaktik örüntü analizinde kelimeler ve çizgeler de kullanılır. 

İşlenmemiş öznitelikler kümesi gereksiz öğeler içerebilir ve büyüklüğünden ötürü yönetilmesi zor olabilir. Bu yüzden, makine öğrenmesi ve örüntü tanıma uygulamalarından çoğu özniteliklerin bir alt kümesinin seçilmesini ya da yeni ve indirgenmiş bir öznitelikler kümesinin oluşturulmasını içerir. Kullanılacak özniteliklerin öğrenmeyi kolaylaştırması, genelliği ve yorumlanabilirliği artırması amaçlanır.

Özniteliklerin çıkarılması ya da seçilmesi öznitelik mühendisliği [en] olarak adlandırılır. Birçok farklı ihtimalin deneylenmesi ve hazır yöntemler ile bir alan uzmanının önsezilerinin bir araya getirilmesini gerektirir.

Sınıflandırma

[değiştir | kaynağı değiştir]

Bir sayısal öznitelikler kümesinin tanımlanması için öznitelik vektörü [en] kullanılabilir. Bir öznitelik vektörü kullanılarak iki ihtimalli sınıflandırma yapılması (ayrıca bkz. perseptron) öznitelik vektörü ve bir ağırlıklar vektörünün skaler çarpımının alınması ve çarpım sonucunun bir eşik değeri ile karşılaştırılması ile mümkün olur.

Bir öznitelikler vektörü kullanılarak yapılan sınıflandırma algoritmalarından bazıları en yakın komşu sınıflandırması [en], yapay sinir ağları ve Bayes yaklaşımlarıdır [en].

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Bishop, Christopher (2006). Pattern recognition and machine learning. Berlin: Springer. ISBN 0-387-31073-8. 
"https://tr.wikipedia.org/w/index.php?title=Öznitelik_(makine_öğrenmesi)&oldid=35863970" sayfasından alınmıştır
Kategori:
  • Makine öğrenimi
  • Sayfa en son 15.59, 18 Ağustos 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Öznitelik (makine öğrenmesi)
Konu ekle