Regresyon analizi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Regresyon analizinin tarihi
  • 2 Temeldeki varsayımlar
  • 3 Doğrusal regresyon
    • 3.1 Anakütle doğrusal regresyon modeli
    • 3.2 İki Değişkenli regresyon katsayı kestirimleri
    • 3.3 Çok değişkenli regresyon katsayı kestirimleri
    • 3.4 Hatalar varyansı ve toplam kareler
    • 3.5 Kestirim denklemin genel uyum iyiliğinin çıkarımsal kontrolü
      • 3.5.1 Belirleme katsayısı yani R-kare (R2) değeri
      • 3.5.2 F-testi
      • 3.5.3 Kestirimi yapılan her tek regresyon parametresinin değerinin çıkarımsal kontrolü
    • 3.6 İnterpolasyon ve ekstrapolasyon
  • 4 Diğer yaklaşımlar
    • 4.1 Ağırlıklı en küçük kareler yöntemi
    • 4.2 Değişkenlerde-hatalar modeli
    • 4.3 Genelleştirilmiş doğrusal model
    • 4.4 Güçlü regresyon
    • 4.5 Ayrık bağımlı değişken
    • 4.6 Doğrusal olmayan regresyon
  • 5 İçsel kaynaklar
  • 6 Kaynakça
  • 7 Bibliyografya
  • 8 Dış bağlantılar

Regresyon analizi

  • العربية
  • Asturianu
  • Azərbaycanca
  • Български
  • বাংলা
  • Català
  • Čeština
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Gaeilge
  • Galego
  • עברית
  • हिन्दी
  • Magyar
  • Bahasa Indonesia
  • Ido
  • Íslenska
  • İtaliano
  • 日本語
  • Jawa
  • 한국어
  • Latviešu
  • Монгол
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Slovenščina
  • Српски / srpski
  • Sunda
  • Svenska
  • Тоҷикӣ
  • ไทย
  • Tagalog
  • Українська
  • Oʻzbekcha / ўзбекча
  • Tiếng Việt
  • 中文
  • 閩南語 / Bân-lâm-gí
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Başlığın diğer anlamları için Regresyon sayfasına bakınız.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de[1] Türk ekonometriciler arasında bu kullanım yaygın değildir.

Örneğin, bir ziraat mühendisi buğday verimi ve gübre miktarı arasındaki ilişkiyi, bir mühendis, basınç ve sıcaklık, bir ekonomist gelir düzeyi ve tüketim harcamaları, bir eğitimci öğrencilerin devamsızlık gösterdiği gün sayıları ve başarı dereceleri arasındaki ilişkiyi bilmek isteyebilir. Regresyon, iki (ya da daha çok) değişken arasındaki doğrusal ilişkinin fonksiyonel şeklini, biri bağımlı diğeri bağımsız değişken olarak bir doğru denklemi olarak göstermekle kalmaz, değişkenlerden birinin değeri bilindiğinde diğeri hakkında kestirim yapılmasını sağlar. Genellikle bu iki (veya çok) değişkenlerin hepsinin niceliksel ölçekli olması zorunluluğu vardır.

Regresyonda, değişkenlerden biri bağımlı diğerleri bağımsız değişken olmalıdır. Buradaki mantık eşitliğin solunda yer alan değişkenin sağında yer alan değişkenlerden etkilenmesidir. Sağda yer alan değişkenlerse diğer değişkenlerden etkilenmemektedir. Burada etkilenmemek matematiksel anlamda bu değişkenleri bir doğrusal denkleme koyduğumuzda etki yapması anlamındadır. Çoklu doğrusallık, ardışık bağımlılık sorunları kastedilmemektedir.

Regresyon analizinin tarihi

[değiştir | kaynağı değiştir]

Regresyon yönteminin ilk şekli en küçük kareler prensibidir ve ilk olarak Adrien Marie Legendre tarafından 1805 yılında ortaya atılmıştır.[2] Hemen takiben 1809 yılında C.F. Gauss[3] aynı yöntemi açıklamıştır. En küçük kareler terimi Legendre tarafından moindres carrés olarak kullanılmış, ancak Gauss aynı yöntemi 1795 yılından beri kullandığını iddia etmiştir. Legendre ve Gauss bu yöntemi astronomik gözlemlerden uydularının güneş etrafındaki yörüngelerini tespit etmek için kullanırken ortaya çıkartmışlardır. 1748 yılında Eüler'in aynı problem üzerinde uğraştığı, fakat başarı sağlayamadığı bilinmektedir. En küçük kareler kuramında sonraki gelişme Gauss'in 1821 yılında yayınladığı bir makalede ortaya çıkartılmış[4] ve bu yayında Gauss sonradan kendi adı verilen Gauss-Markov teoreminin bir şeklini açıklamıştır.

Regresyon terimi 19. yüzyılda İngiliz istatistikçisi Francis Galton tarafından bir biyolojik inceleme için ortaya atılmıştır. Bu incelemenin ana konusu kalıtım olup, aile içinde baba ve annenin boyu ile çocukların boyu arasındaki bağlantıyı araştırmakta ve çocukların boylarının bir nesil içinde eski ata nesillerinin ortalamasına geri döndüklerini yani bir nesil içinde ortalamaya geri dönüş olduğu inceleme konusudur. Galton geri dönüş terimi için ilk yazısında İngilizce olarak reversion terimi kullanmışsa da sonradan aynı anlamda olan regression sözcüğü kullanmıştır.[5][6] Bu çalışmalarında Galton istatistiksel 'regresyon' kavramını ve yöntemini de geliştirmiştir. Udny Yüle ve Karl Pearson bu yöntemi daha geniş genel istatistiksel alanlara uygulayıp geliştirmişlerdir...[7][8] Bu yazılarda bağımlı ve bağımsız değişkenlerin normal dağılım gösterdiği varsayılmaktadır. Bu kısıtlayıcı varsayım R.A. Fisher 1922 ve 1925 yıllarındaki yayınları ile sadece bağımlı değişkenin koşullu dağılımının normal olduğu hallere uygulanmak üzere daha genişletilmiştir.[9][10]).

Bu kavramları ve yöntemleri genel olarak, kalıtım konusu dışında "ortalamaya geri dönüş" ile hiçbir ilgisi olmayan konularda, kullanan istatistikçiler regresyon terimini kullanmakta devam etmişlerdir. Zamanımızda, bu terim, kavram ve yöntemin Galton'un konusu ile bütün ilişkisi yok olmuştur ve artık regresyon terimi doğrusal bağlantı bulunması ve eğri uydurma ile eş anlamlar vermektedir.

Temeldeki varsayımlar

[değiştir | kaynağı değiştir]

Doğrusal regresyon yöntemini kullanmak için temelde şu varsayımların bulunduğu kabul edilmektedir:[1]

  • Çıkarımsal yöntem olduğu için kullanılan iki değişkenli örneklemin ya istatistiksel rastgele örneklem olduğu ya da anakütleyi çok iyi temsil ettiği bilinmektedir.
  • Bağımlı değişken içinde hata bulunmaktadır. Bu hatanın bir rassal değişken olduğu ve ortalama hatanın sıfır olduğudur. Sistematik hata da bulunması mümkündür ama bu hatanın incelemeye alınması regresyon analizi kapsamı dışındadır.
  • Bağımsız değişken hatasızdır. Eğer bağımsız değişkende hata bulunduğu varsayılırsa özel bir yöntem şekli olan değişkenler-içinde-hata modeli teknikler kullanılarak model kurulmalıdır.
  • Hatalar zaman içinde ve kendi aralarında birbirine bağımlı değildir. Buna otokorelasyon veya serisel korelasyon bulunmaması varsayımı adı verilir.
  • Hata varyansı sabittir ve veriler arasında hiç değişmediği varsayılır. Bu eşvaryanslılık veya homoskedastisite varsayımı adı ile anılır. Eger bu varsayim uygun degilse ağırlıklı en küçük kareler yöntemi uygulanabilir.
  • Hataların varyans-kovaryans matrisinin çapraz elamanları sabit hata varyansı olur ve matrisin diğer çapraz dışı elemanları 0 olur.
  • Eğer çoklu regresyon analizi yapılıyor ve üç veya daha çok parametre için kestirim isteniyorsa, bağımsız değişkenlerin birbirleri ile bağlantısının olmaması gereklidir. Buna çoklu doğrusallık (multicollinearity) olmaması varsayımı adı verilir.
  • Hatalar bir normal dağılım gösterir. Eğer bu hataların normalliği varsayımı uygun değilse genelleştirilmiş doğrusal model uygulanabilir.

Doğrusal regresyon

[değiştir | kaynağı değiştir]

Anakütle doğrusal regresyon modeli

[değiştir | kaynağı değiştir]

Doğrusal regresyonda, anakütle model belirlenmesine göre[1] bağımlı değişken y i {\displaystyle y_{i}} {\displaystyle y_{i}} parametrelerin bir doğrusal birleşiği olur. Dikkat edilirse parametrelerden bahis edilmektedir, çünkü bağımsız değişkenlerin bir doğrusal bileşiği olması gerekli değildir. Örneğin, tek bir bağımsız değişkenli ( x i {\displaystyle x_{i}} {\displaystyle x_{i}}) ve iki parametreli ( β 0 {\displaystyle \beta _{0}} {\displaystyle \beta _{0}} ve β 1 {\displaystyle \beta _{1}} {\displaystyle \beta _{1}}):

doğru: y i = β 0 + β 1 x i + ϵ i ,   i = 1 , n {\displaystyle y_{i}=\beta _{0}+\beta _{1}x_{i}+\epsilon _{i},\ i=1,n\!} {\displaystyle y_{i}=\beta _{0}+\beta _{1}x_{i}+\epsilon _{i},\ i=1,n\!}

Burada ϵ i {\displaystyle \epsilon _{i}} {\displaystyle \epsilon _{i}} bir hata terimidir ve i {\displaystyle i} {\displaystyle i} alt-indeksleri bir belirlenmiş mümkün gözlemi ifade eder. Ayrıca ϵ i {\displaystyle \epsilon _{i}} {\displaystyle \epsilon _{i}}, i {\displaystyle i} {\displaystyle i}'nci gözlemin regresyon doğrusuna olan uzaklığını ifade etmekte olup ortalaması 0 ve varyansı σ 2 {\displaystyle \sigma ^{2}} {\displaystyle \sigma ^{2}} olan bir normal dağılış gösterir.

Çoklu doğrusal regresyonda iki veya daha çok sayıda bağımsız değişken veya bağımsız değişken fonksiyonu bulunur. Örneğin, önce verilmiş olan regresyon modeli yeni bir terim xi2 eklenerek değiştirilirse; şu anakütle çoklu doğrusal regresyon modeli ortaya çıkar:

parabol: y i = β 0 + β 1 x i + β 2 x i 2 + ϵ i ,   i = 1 , m {\displaystyle y_{i}=\beta _{0}+\beta _{1}x_{i}+\beta _{2}x_{i}^{2}+\epsilon _{i},\ i=1,m\!} {\displaystyle y_{i}=\beta _{0}+\beta _{1}x_{i}+\beta _{2}x_{i}^{2}+\epsilon _{i},\ i=1,m\!}

Denklemin sağ tarafındaki bağımsız değişken için bir ikinci derece (kuadratik) ifade bulunmasına rağmen bu model hala doğrusal regresyon modelidir; çünkü üç tane parametre, yani β 0 {\displaystyle \beta _{0}} {\displaystyle \beta _{0}}, β 1 {\displaystyle \beta _{1}} {\displaystyle \beta _{1}} ve β 2 {\displaystyle \beta _{2}} {\displaystyle \beta _{2}} ile çoklu değişkenli doğrusaldır.

Daha genel çoklu doğrusal regresyon modelinde p tane bağımsız değişken olduğu varsayılır ve anakütle modeli şöyle ifade edilir:

y i = β 0 + β 1 x 1 i + ⋯ + β p x p i + ε i , {\displaystyle y_{i}=\beta _{0}+\beta _{1}x_{1i}+\cdots +\beta _{p}x_{pi}+\varepsilon _{i},} {\displaystyle y_{i}=\beta _{0}+\beta _{1}x_{1i}+\cdots +\beta _{p}x_{pi}+\varepsilon _{i},}

veya biraz daha kısa olarak

y i = β 0 + ∑ j = 1 p X i j β j + ε i {\displaystyle y_{i}=\beta _{0}+\sum _{j=1}^{p}X_{ij}\beta _{j}+\varepsilon _{i}} {\displaystyle y_{i}=\beta _{0}+\sum _{j=1}^{p}X_{ij}\beta _{j}+\varepsilon _{i}}

İki Değişkenli regresyon katsayı kestirimleri

[değiştir | kaynağı değiştir]

Anakütleden bir rastgele örneklem elde edilirse, bu β i {\displaystyle \beta _{i}} {\displaystyle \beta _{i}} anakütle parametreleri için örneklem tahminleri β ^ i {\displaystyle {\widehat {\beta }}_{i}} {\displaystyle {\widehat {\beta }}_{i}} bulunur ve şu örneklem doğrusal regresyon denklemi elde edilir:

y i = β ^ 0 + β ^ 1 X i + e i {\displaystyle y_{i}={\widehat {\beta }}_{0}+{\widehat {\beta }}_{1}X_{i}+e_{i}} {\displaystyle y_{i}={\widehat {\beta }}_{0}+{\widehat {\beta }}_{1}X_{i}+e_{i}}

Burada e i {\displaystyle e_{i}} {\displaystyle e_{i}} terimi örneklemden elde edilen artık olur; ve

e i = y i − y ^ i {\displaystyle e_{i}=y_{i}-{\widehat {y}}_{i}} {\displaystyle e_{i}=y_{i}-{\widehat {y}}_{i}}

olur.

Bu örneklem regresyon denkleminin kestirimini elde etmenin yöntemi adi en küçük kareler (Ordinary least squares) olarak adlandırılır.[1] Bu yönteme göre parametre kestirimleri artıkların kare toplamının minimum (en küçük) değerini bulmakla elde edilir. Artıklar minimum toplamı AKT şudur:

A K T = ∑ i = 1 N e i 2 {\displaystyle AKT=\sum _{i=1}^{N}e_{i}^{2}} {\displaystyle AKT=\sum _{i=1}^{N}e_{i}^{2}}

Bu fonksiyonun minimum değerini bulmak her parametre ile birinci kısımsal türevi alınarak sıfıra eşitlenir. Böylece her kısimsal türeve göre bir denklem elde edilir. Örneğin iki parametreli doğrusal regresyon için iki değişkenli iki denklem elde edilir. Bu simultane denklem sitemine normal denklemler adı verilir ve bu simultane denklemler sistemi birlikte çözülüp her anakütle parametresi için bir kestrim değeri bulunur.

İki parametreli basit doğrusal regresyon için iki anakütle parametre kestirimleri olan β ^ 0 , β ^ 1 {\displaystyle {\widehat {\beta }}_{0},{\widehat {\beta }}_{1}} {\displaystyle {\widehat {\beta }}_{0},{\widehat {\beta }}_{1}} şu normal denklemlerin birlikte çözülmesi ile elde edilir:

m   α + ∑ x i   β = ∑ y i ∑ x i   α + ∑ x i 2   β = ∑ x i y i {\displaystyle {\begin{array}{lcl}m\ \alpha +\sum x_{i}\ \beta =\sum y_{i}\\\sum x_{i}\ \alpha +\sum x_{i}^{2}\ \beta =\sum x_{i}y_{i}\end{array}}} {\displaystyle {\begin{array}{lcl}m\ \alpha +\sum x_{i}\ \beta =\sum y_{i}\\\sum x_{i}\ \alpha +\sum x_{i}^{2}\ \beta =\sum x_{i}y_{i}\end{array}}}

Burada bütün toplamlar i=1 den i=n kadardır ve örneklem toplamları, toplam kareleri ve toplam karşı çarpımı ile elde edilirler.

Bu iki değiskenli iki doğrusal denklem için çeşitli çözüm yolları vardır. Burada Cramer'in kuralı kullanılıp şu ifade elde edilir:

β ^ = m ∑ x i y i − ∑ x i ∑ y i Δ = ∑ ( x i − x ¯ ) ( y i − y ¯ ) ∑ ( x i − x ¯ ) 2 {\displaystyle {\hat {\beta }}={\frac {m\sum x_{i}y_{i}-\sum x_{i}\sum y_{i}}{\Delta }}={\frac {\sum (x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{\sum (x_{i}-{\bar {x}})^{2}}}\,} {\displaystyle {\hat {\beta }}={\frac {m\sum x_{i}y_{i}-\sum x_{i}\sum y_{i}}{\Delta }}={\frac {\sum (x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{\sum (x_{i}-{\bar {x}})^{2}}}\,}
α ^ = ∑ x i 2 ∑ y i − ∑ x i ∑ x i y i Δ = y ¯ − x ¯ β ^ {\displaystyle {\hat {\alpha }}={\frac {\sum x_{i}^{2}\sum y_{i}-\sum x_{i}\sum x_{i}y_{i}}{\Delta }}={\bar {y}}-{\bar {x}}{\hat {\beta }}} {\displaystyle {\hat {\alpha }}={\frac {\sum x_{i}^{2}\sum y_{i}-\sum x_{i}\sum x_{i}y_{i}}{\Delta }}={\bar {y}}-{\bar {x}}{\hat {\beta }}}

burada

Δ = m ∑ x i 2 − ( ∑ x i ) 2 {\displaystyle \Delta =m\sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} {\displaystyle \Delta =m\sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}

Böylece iki parametreli doğrusal regresyon icin en küçük kareler parametre tahminleri için formüller şöyledir:

β 1 ^ = ∑ ( x i − x ¯ ) ( y i − y ¯ ) ∑ ( x i − x ¯ ) 2 {\displaystyle {\widehat {\beta _{1}}}={\frac {\sum (x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{\sum (x_{i}-{\bar {x}})^{2}}}} {\displaystyle {\widehat {\beta _{1}}}={\frac {\sum (x_{i}-{\bar {x}})(y_{i}-{\bar {y}})}{\sum (x_{i}-{\bar {x}})^{2}}}} a

ve

β 0 ^ = y ¯ − β 1 ^ x ¯ {\displaystyle {\hat {\beta _{0}}}={\bar {y}}-{\widehat {\beta _{1}}}{\bar {x}}} {\displaystyle {\hat {\beta _{0}}}={\bar {y}}-{\widehat {\beta _{1}}}{\bar {x}}}

Burada x ¯ {\displaystyle {\bar {x}}} {\displaystyle {\bar {x}}} x {\displaystyle x} {\displaystyle x} gözlem değerlerinin ortalaması ve y ¯ {\displaystyle {\bar {y}}} {\displaystyle {\bar {y}}} ise y {\displaystyle y} {\displaystyle y} gözlem değerlerinin ortalamasıdır.

Bir veri serisi için kırmızı noktalar) doğrusal regresyon.

Çok değişkenli regresyon katsayı kestirimleri

[değiştir | kaynağı değiştir]

Çok değişkenli regresyon için regresyon katsayısı kestrimi de iki değişkenli regresyon hâli gibi en küçük kareler yöntemi ile yapılır.[1] Bu demektir ki kestirmde ortaya çıkacak artıkların karelerinin toplamı minimize edilecektir. Artıklar ri olur ve minimize edilecek objektif fonksiyon soyle ifade edilir:

S = ∑ i = 1 m r i 2 , {\displaystyle S=\sum _{i=1}^{m}r_{i}^{2},} {\displaystyle S=\sum _{i=1}^{m}r_{i}^{2},}

Her bir artık, gözlemi yapılan bir değer ile kestirim modelini kullanarak elde edilen bir kestirim değeri arasındaki farktır:

r i = y i − ∑ j = 1 n X i j β ^ j {\displaystyle r_{i}=y_{i}-\sum _{j=1}^{n}X_{ij}{\hat {\beta }}_{j}} {\displaystyle r_{i}=y_{i}-\sum _{j=1}^{n}X_{ij}{\hat {\beta }}_{j}}

En küçük kareler yöntemine göre S, toplam artıklar karesi, minimize edilecektir. Belirli koşullar geçerli ise, elde edilecek parametre kestrimleri (Gauss-Markov teoremine göre) en küçük varyans gösteren kestirim ve hatta maksimum değişirlilik özelliği gösteren dogrusal kestirim olabilirler.

Anakütle regresyon katsayılarının kestirim regresyon katsayıları için bir ^ (şapka) notasyonu kullanılır: yani β ^ i {\displaystyle {\hat {\beta }}_{i}} {\displaystyle {\hat {\beta }}_{i}}. Genellikle çok değişkenli regresyon için normal denklemler şöyle ifade edilir

∑ i = 1 N ∑ p = 1 p X i j X i k β ^ k = ∑ i = 1 N X i j y i ,   j = 1 , p {\displaystyle \sum _{i=1}^{N}\sum _{p=1}^{p}X_{ij}X_{ik}{\hat {\beta }}_{k}=\sum _{i=1}^{N}X_{ij}y_{i},\ j=1,p\,} {\displaystyle \sum _{i=1}^{N}\sum _{p=1}^{p}X_{ij}X_{ik}{\hat {\beta }}_{k}=\sum _{i=1}^{N}X_{ij}y_{i},\ j=1,p\,}

Matris notasyonu kullanılırsa, normal denklemler şöyle yazılabilir:

( X T X ) β ^ = X T y {\displaystyle \mathbf {\left(X^{T}X\right){\hat {\boldsymbol {\beta }}}=X^{T}y} } {\displaystyle \mathbf {\left(X^{T}X\right){\hat {\boldsymbol {\beta }}}=X^{T}y} }

Eğer X T X {\displaystyle X^{T}X} {\displaystyle X^{T}X} matrisi singuler değilse

β ^ = ( X T X ) − 1 X T y {\displaystyle {\boldsymbol {\hat {\beta }}}=\mathbf {\left(X^{T}X\right)^{-1}X^{T}y} } {\displaystyle {\boldsymbol {\hat {\beta }}}=\mathbf {\left(X^{T}X\right)^{-1}X^{T}y} },

Bu doğru uydurma tahminleridir.

Hatalar varyansı ve toplam kareler

[değiştir | kaynağı değiştir]

Anakütle hatalarının normal dağılım gösterdiğine dair bir diğer varsayımı da kullanarak incelemeci önce hatalar varyansı ve toplam kareler değerlerini bulur ve bunları kullanarak tahmin edilen denklem ve parametreler üzerinde çıkarımsal istatistik sonuçlara varabilir.[1]

Anakütle hata teriminin sabit bir varyansı bulunduğu varsayımına göre, hatalar varyansı kestirimi şöyle bulunur:

σ ε ^ = S S E N − 2 {\displaystyle {\hat {\sigma _{\varepsilon }}}={\sqrt {\frac {SSE}{N-2}}}} {\displaystyle {\hat {\sigma _{\varepsilon }}}={\sqrt {\frac {SSE}{N-2}}}}

Bu ifadeye regresyon için kare kök ortalama hata karesi adı verilir. Parametre kestirimleri için standart hata şöyle bulunur:

σ ^ β 0 = σ ^ ε 1 N + x ¯ 2 ∑ ( x i − x ¯ ) 2 {\displaystyle {\hat {\sigma }}_{\beta _{0}}={\hat {\sigma }}_{\varepsilon }{\sqrt {{\frac {1}{N}}+{\frac {{\bar {x}}^{2}}{\sum (x_{i}-{\bar {x}})^{2}}}}}} {\displaystyle {\hat {\sigma }}_{\beta _{0}}={\hat {\sigma }}_{\varepsilon }{\sqrt {{\frac {1}{N}}+{\frac {{\bar {x}}^{2}}{\sum (x_{i}-{\bar {x}})^{2}}}}}}
σ ^ β 1 = σ ^ ε 1 ∑ ( x i − x ¯ ) 2 {\displaystyle {\hat {\sigma }}_{\beta _{1}}={\hat {\sigma }}_{\varepsilon }{\sqrt {\frac {1}{\sum (x_{i}-{\bar {x}})^{2}}}}} {\displaystyle {\hat {\sigma }}_{\beta _{1}}={\hat {\sigma }}_{\varepsilon }{\sqrt {\frac {1}{\sum (x_{i}-{\bar {x}})^{2}}}}}

Örneklem veri serisinin değişebilirliği değişik toplam kareler suretiyle ifade edilebilirler.

  • Tüm toplam kareler (örneklem varyansına orantılı olur):
S S t o t = ∑ i ( y i − y ¯ ) 2 {\displaystyle SS_{\rm {tot}}=\sum _{i}(y_{i}-{\bar {y}})^{2}} {\displaystyle SS_{\rm {tot}}=\sum _{i}(y_{i}-{\bar {y}})^{2}}.
  • Regresyon toplam kareler: Bazen açıklanan toplam kareler diye anılır.
S S r e g = ∑ i ( f i − f ¯ ) 2 {\displaystyle SS_{\rm {reg}}=\sum _{i}({f_{i}}-{\bar {f}})^{2}} {\displaystyle SS_{\rm {reg}}=\sum _{i}({f_{i}}-{\bar {f}})^{2}}
  • Toplam hatalar karesi: Artıklar toplam karesi olarak da isimlendirilir.
S S e r r = ∑ i ( y i − f i ) 2 {\displaystyle SS_{\rm {err}}=\sum _{i}(y_{i}-f_{i})^{2}\,} {\displaystyle SS_{\rm {err}}=\sum _{i}(y_{i}-f_{i})^{2}\,}

Bir regresyon modeli için parametreler, en küçük kareler yöntemi kullanılarak, tahmin edildikten sonra regresyon kontrol etme yöntemleri (yani çıkarımsal kontrol) uygulamak gerekir. Bunlar bulunan tahmin edilmiş genel doğrusal denklemin örnekleme uyum iyiliği sınaması ve kestirimci regresyon katsayılarının tek tek istatistiksel anlamlılığını sınamak veya güvenlik aralığı sağlamak olarak özetlenir.

Kestirim denklemin genel uyum iyiliğinin çıkarımsal kontrolü

[değiştir | kaynağı değiştir]

Tahmin edilen doğrusal regresyon denkleminin genel olarak örnekleme uygun olup olmadığı için uygulanan çıkarımsal istatistik işlemleri iki türde olabilir:[1]

  • belirleme katsayısı yani R-kare değerinin bulunması;
  • regresyon denklemine F-sınaması uygulaması.

Bu iki çıkarımsal kontrol aynı konunun çıkarımsal kontrolü için kullanılır: tahmin regresyon denkleminin tümünün uygun olup olmadığı. Bu nedenle iki yöntemden tek birini kullanmak yeterlidir. Buna rağmen birçok pratik analizde her iki çıkarımsal analiz de kullanılmaktadır; çünkü ikisinde hesaplanması için nerede ise aynı yöntem kullanılır ve eğer istatistik veya ekonometrik kompüter paketi kullanılırsa her iki yöntem için gerekli sonuçlar birlikte verilir.

Belirleme katsayısı yani R-kare (R2) değeri

[değiştir | kaynağı değiştir]

Belirleme katsayısı yani (R2) ) R-kare) için en genel tanımlama formülü sudur:[1] R 2 ≡ 1 − S S e r r S S t o t {\displaystyle R^{2}\equiv 1-{SS_{\rm {err}} \over SS_{\rm {tot}}}} {\displaystyle R^{2}\equiv 1-{SS_{\rm {err}} \over SS_{\rm {tot}}}}.

yani (1-toplam hatalar karesi) ile (tüm toplam kareler) oranı; veya (1-Artıklar toplam karesi) ile (tüm toplam kareler) oranı.

Çıkarımsal analizde R-kare değeri bulunur ve bulunan değer doğru hesaplanmışsa 0 ile 1 arasında olmalıdır. Yapılan bu analiz çeşitli hallerde açıklanabilir:

  • Eğer sadece iki değişkenli (Y ve X0) regresyon analizi yapılıyorsa, geometrik olarak X-Y düzeyinde doğrusal regresyon tahmini bu düzeyde olan noktalara en-küçük-kareler prensibine göre en iyi uyan bir doğru uydurmaktır. Eğer bütün noktalar bu tahmin edilen doğru üzerinde ise tahmin edilen doğru uyumu bu veri noktaları için hiç hatasızdır ve veri noktaları doğrudan hiç ayrılık göstermez. Hat varyasyonu bu halde sıfır olur. Bu veri noktaları tahmin edilen doğrudan uzaklaştıkça hatalar varyasyonu çoğalmaktadır.
  • Üç değişkenli (Y ve X1 ve X2 değişkenli) çoklu regresyonda ise tahmin edilen bir üç boyutlu düzeydir. EĞer bu düzey veri noktalarına tam olarak uyarsa bütün veri noktaları tahmin edilen düzey üstüne düşerler. Veri noktaları tahmin edilen düzey etrafında dağılmaya başlarlarsa, hatalar varyasyonu artmaya başlar.
  • Üç değişkenden daha çoklu değişkenli regresyon analizi ise grafik olarak verilemez; çok boyutlu uzayı gösterir ve tahmin edilen regresyon katsayıları ise bu Çok boyutlu uzayda bir hiper-düzey ortaya çıkartır ve bu hiper-düzeyden ayrılmalar hata varyasyonudur.

Genel olarak:

    • Eğer R2 değeri sıfıra yakınsa, uyum iyiliği uygun olmadığı kabul edilir. Bu sonuç ortaya çıkarsa toplanan verilere kullanılan modelin uygun olmadığı sonucu çıkarılır ve bu uygunsuzluk modelinin değiştirilmesini gerektirir. Bu demektir ki model ile açıklanan varyasyon tüm varyansyonu %0ini açıklamakta ve geometrik olarak örneklem verileri regresyon ile elde edilen hiperdüzeyin etrafına çok dağılmış olarak bulunmaktadırlar. Bu çıkarıma varılırsa bu basamağa kadar yapılmış olan analizin bir kenara bırakılması ve diğer bir modelin bulunup kullanılması gerekir.
    • Eğer R2 değeri bire yakınsa, uyum iyiliği uygun olduğu sonucu çıkarılır. Geometrik olarak çok değişken boyutlu uzayda, örneklem veri noktalarının hepsi uzayda dağılma göstermeyip hemen hepsi regresyon ile elde edilen hiperdüzey üzerinde bulunmaktadır. Bu halde çıkarımsal kontrol analizinin diğer basamağına geçilir.

F-testi

[değiştir | kaynağı değiştir]

Regresyon denklem uyum iyiliği için F-testi için sıfır hipotez (H0) anakütle model katsayılarının hepsinin değerinin 0 (sıfır)a eşit olduğudur.[1] Yani sıfır hipotez gerçekse hesap ile elde edilen katsayı kestirimlerinin hepsi anakütle için 0dir yani hiçbir etki ve bağlantı anlamı vermez. Bu basamağa kadar yapılmış olan analizin bir kenara bırakılması ve diğer bir modelin bulunup kullanılması gerekir. Eğer sıfır hipotez reddedilirse regresyon kestirimleri genellikle uygundur ve cikarimsal kontrol analizine devam edilir.


Kestirimi yapılan her tek regresyon parametresinin değerinin çıkarımsal kontrolü

[değiştir | kaynağı değiştir]

Yani bu tahmin edilmiş standart hataları kullanarak her tek anakütle regresyon parametresi hakkında kestirim güvenlik aralıkları kurabilir ve hipotez sınamaları yapılabilir.[1]

İnterpolasyon ve ekstrapolasyon

[değiştir | kaynağı değiştir]

Regresyon modelleri kullanarak kestirim yapılmak istenirse, bağımsız değişken olan x {\displaystyle x} {\displaystyle x} değişken veri değerleri verilirse bağımlı değişken y {\displaystyle y} {\displaystyle y} için kestrim değerleri ( f i {\displaystyle f_{i}} {\displaystyle f_{i}}) tahmin etmek için kullanabilirler.

Eğer bu kestirim, modeli kurmak için kullanılan x {\displaystyle x} {\displaystyle x} değişken değerleri için yapılıyorsa, bu işlem interpolasyon olarak adlandırılır. Eğer kestirim modeli kurmak için kullanılan bağımsız değişken değerlerinin dışındaki değerler ile yapılırsa, ekstrapolasyon olarak adlandırılır ve ekstrapolasyon çok daha yanlı olabilir.

Diğer yaklaşımlar

[değiştir | kaynağı değiştir]

Ağırlıklı en küçük kareler yöntemi

[değiştir | kaynağı değiştir]

En küçük kareler yöntemi kullanılırken yapılan temel varsayımlarından biri hata terimi varyanslarının birbirine eşit olduğudur. Eğer gözlem hataları birbirine eşit olmayan hata terimi varyansları gösteriyorlarsa, en küçük kareler yönteminin bu önemli varsayımı ihlal edilmiş olur ve en küçük kareler yöntemi ile elde edilen regresyon kestirimleri anlamlı olmayabilir. Bu sorunu çözümlemek için her gözleme ayrı ağırlık vererek en küçük kareler yöntemi uygulamak imkânı vardır ve bu genelleştirmeye ağırlıklı en küçük kareler adı verilir. Ağırlıklı En Küçük Kareler Yöntemi,değişkenlere ağırlık vererek veya değişkenlerin önem derecesini değiştirerek uygulanan en küçük kareler yöntemidir.

Değişkenlerde-hatalar modeli

[değiştir | kaynağı değiştir]

En küçük kareler yöntemi kullanılırken yapılan temel varsayımlarından biri de gözlem hatalarının yalnızca bağımlı değişkenlerde yapıldığı ve bağımsız değişkende gözlem hatası bulunmadığıdır. Eğer bağımlı değişkende hata bulunduğu ve bunun elde edilen regresyon kestirim değerlerine çok etki yaptığı bilinirse, değişkenlerde-hatalar-modeli veya diğer ismi ile total en küçük kareler modeli ve bu modelle ilişkili kestirim yöntemleri kullanılabilir.

Genelleştirilmiş doğrusal model

[değiştir | kaynağı değiştir]

Eğer anakütle regresyon modeli içindeki hatalar için olasılık dağılım fonksiyonu bir normal dağılım göstermiyorsa genelleştirilmiş doğrusal model kullanılabilir. Bu halde hataların olasılık dağılım fonksiyonu ussel dağılım, gamma dağılımı, ters Gauss tipi dağılım, Poisson dağılımı, binom dağılım, multinom dağılım vb. olabilir.

Güçlü regresyon

[değiştir | kaynağı değiştir]

Ayrık bağımlı değişken

[değiştir | kaynağı değiştir]

Doğrusal olmayan regresyon

[değiştir | kaynağı değiştir]
Ana madde: Doğrusal olmayan regresyon

Eğer değişkenler hakkında kurulan teori dolayasıyla anakütle modeli parametreleri ile doğrusal değilse, kestirim yapılırken toplam kareleri tekrarlama usulü kullanarak minimize edilmesi gerekir. Bu kullanılan tekrarlama yöntemi birçok karışık sorunlar ortaya çıkarır. Bunların özet olarak incelenmesi için doğrusal olmayan regresyon#Dogrusal olmayan ve dogrusal en kucuk kareler arasindaki farklar maddesine bakiniz.[1]

İçsel kaynaklar

[değiştir | kaynağı değiştir]
  • Parçalar için regresyon
  • Güvenlik aralığı
  • Güvenlik yöresi
  • Ekstrapolasyon
  • Krigleme
  • Tahmin etme
  • Tahmin aralığı
  • İstatistik
  • Trend kestirimi
  • Güçlü regresyon
  • Çokdeğişirli normal dağılım

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ a b c d e f g h i j k Gujarati, Damodar (çev. Ümit Şenesen, Gülay Günlük Şenesen) (2008) Temel Ekonometri, Literatür Yayınları ISBN 975-7860-99-9.
  2. ^ A.M. Legendre (1805), Nouvelles méthodeş pour la détermination des orbites des comètes. “Sur la Méthode des moindres quarrés” bir ek bölümde bulunur.
  3. ^ C.F. Gauss (1809), Theoria Motus Corporum Coeleştium in Sectionibüs Conicis Şölem Ambientum.
  4. ^ C.F. Gauss (1821/1823). Theoria çombinationis observationum erroribüs minimiş obnoxiae.
  5. ^ Francis Galton (1877), "Typical laws of heredity", Nature 15, 492-495, 512-514, 532-533. (Galton burada bezelyelerle yaptığı kalıtım deneyi sonucunda reversion terimi kullanır.)
  6. ^ Francis Galton (1885) Presidential address, Section H, Anthropology.(Burada insanlarin boylari uzerinde yaptigi arastirma sonucu için "regression" terimi kullanir.)
  7. ^ G. Udny Yule (1897) "On the Theory of Correlation", J. Royal Statist. Soç., 1897, p. 812-54.
  8. ^ Karl Pearson, G.U.Yüle, Norman Blanchard, and Alice Lee (1903). "The Law of Ancestral Heredity", Biometrika
  9. ^ R.A. Fisher (1922), "The goodness of fit of regression formulae, and the distribution of regression çoefficients", J. Royal Statist. Soç., 85, 597-612
  10. ^ R.A. Fisher (1925),Statistical Methods för Research Workers

Bibliyografya

[değiştir | kaynağı değiştir]
  • Gujarati, Damodar (çev. Ümit Şenesen, Gülay Günlük Şenesen) (2008) Temel Ekonometri, Literatür Yayınları ISBN 975-7860-99-9.
  • Audi, R., Ed. (1996). "Curve fitting problem," The Cambridge Dictionary of Philosophy. Cambridge, Cambridge University Press. pp. 172–173. (İngilizce)
  • William H. Kruskal and Judith M. Tanur, ed. (1978), "Linear Hypotheses," International Encyclopedia of Statistics. Free Press, cilt 1 (İngilizce)
Evan J. Williams, "I. Regression," say. 523-41.
Julian C. Stanley, "II. Analysis of Variance," pp. 541-554.
  • Lindley, D.V. (1987). "Regression and correlation analysis," New Palgrave: A Dictionary of Economics, Cilt. 4, say. 120-23. (İngilizce)
  • Birkes, David and Yadolah Dodge, Alternative Methods of Regression. ISBN 0-471-56881-3 (İngilizce)
  • Chatfield, C. (1993) "Calculating Interval Forecasts," Journal of Business and Economic Statistics, 11. pp. 121–135. (İngilizce)
  • Dinçer, F. "Regresyon Kelimesinin Tarihi",[1]20 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Draper, N.R. ve Smith, H. (1998).Applied Regression Analysis Wiley Series in Probability and Statistics (İngilizce)
  • Fox, J. (1997). Applied Regression Analysis, Linear Models and Related Methods. Sage (İngilizce)
  • Hardle, W., Applied Nonparametric Regression (1990), ISBN 0-521-42950-1 (İngilizce)
  • Meade, N. ve T. Islam (1995) "Prediction Intervals for Growth Curve Forecasts," Journal of Forecasting, 14, say. 413-430. (İngilizce)
  • Munro, Barbara Hazard (2005) "Statistical Methods for Health Care Research 5th ed." Lippincott Williams & Wilkins, (İngilizce)
  • Sykes, A.O. "An Introduction to Regression Analysis" (Innaugural Coase Lecture)
  • Kotsiantis, S., Kanellopoulos, D. ve Pintelas, P. (2006) "Local Additive Regression of Decision Stumps", Lecture Notes in Artificial Intelligence, Springer-Verlag, Vol. 3955, SETN 2006, say.. 148 – 157 (İngilizce)
  • Kotsiantis, S. ve Pintelas, P. (2005) "Selective Averaging of Regression Models", Annals of Mathematics, Computing & TeleInformatics, Cilt 1, No 3, say. 66-75 (İngilizce)

Dış bağlantılar

[değiştir | kaynağı değiştir]
Wikimedia Commons'ta Regresyon analizi ile ilgili ortam dosyaları mevcuttur.
  • Regresyon analizi12 Nisan 2009 tarihinde Wayback Machine sitesinde arşivlendi.
  • Curvefit: A complete guide to nonlinear regression21 Temmuz 2009 tarihinde Wayback Machine sitesinde arşivlendi. - Online ders kitabı
  • RM4E ile regresyonun kolaylaştırılması
  • Doğrusal model üzerine yorumlar2 Temmuz 2010 tarihinde Wayback Machine sitesinde arşivlendi. - Bill Venbables tarafından bazı doğrusal regresyon modelleri üzerinde birkaç yorum.
  • Mazoo's Learning Blog - Doğrusal regresyon için örnek. Doğrusal regresyon denkleminin, varyansların, standart hataların, korelasyon katsayısının, belirleme katsayısının ve güvenlik aralıklarının nasıl bulunduğunu göstermektedir.
  • Zayif korelasyon bağlantılı verilerin regresyonu14 Mart 2010 tarihinde Wayback Machine sitesinde arşivlendi. - Y -aralığı X-aralığından çok daha küçük olursa nasıl regresyon hataları ortaya çıkabilir.
  • xuru.org11 Nisan 2010 tarihinde Wayback Machine sitesinde arşivlendi. Online regresyon avadanlığı
  • Matlab SUrrogate MOdeling Toolbox - SUMO Toolbox - Aktif öğrenme + Model seçimi + Vekil modeli regresyonu için Matlab yazılımı
  • g
  • t
  • d
İstatistik
Betimsel istatistik
Sürekli veriler
Merkezî konum
Ortalama (Aritmetik, Geometrik, Harmonik) • Medyan • Mod
Yayılma
Açıklık • Standart sapma • Varyasyon katsayısı • Çeyrekler açıklığı • Kesirlilikler (kantil) (Dörttebirlik, Ondabirlik, Yüzdebirlik)
Dağılım şekli
Varyans • Çarpıklık • Basıklık • Moment (matematik)
İstatistiksel tablolar
Sıklık dağılımı • Çoklu sayılı özetleme tabloları • İlişki tablosu • Çoklu-yönlü sınıflandırma tabloları
İstatistiksel grafikler
Dairesel grafik • Çubuk grafiği • Kutu grafiği • Dal-yaprak grafikleri • Kontrol diyagramı • Histogram • Sıklık çizelgesi • Q-Q grafiği • Serpilme diyagramı
Veri toplama
Örnek tasarımı
Anakütle • Basit rassal örnekleme Örüntülü örnekleme • Tabakalı örnekleme • Küme örneklemesi • Çok aşamalı örnekleme
Deneysel tasarım
Anakütle • İstatistiksel deneysel tasarım tipleri • Deneysel hata • Yineleme • Bloklama • Duyarlılık ve belirleme
Örneklem kavramları
Örneklem büyüklüğü • Sınama gücü • Etki büyüklüğü • Örnekleme dağılımı • Standart hata
Çıkarımsal istatistik
ve
İstatistiksel kestirim ve testler
Çıkarımsal analiz tipleri
Kestirim • Parametrik çıkarımsal analiz • Parametrik olmayan çıkarımsal analiz • Bayesci çıkarımsal analiz • Meta-analiz
Çıkarımsal kestirim
Genel kestirim kavramları
Momentler yöntemi • Enbüyük olabilirlik • Enbüyük artçıl • Bayes-tipi kestirimci • Minimum uzaklık • Maksimum aralık verme
Tekdeğişkenli kestirim
Kestirim • Güven aralığı • İnanılır aralık
Hipotez testi
İstatistiksel test ana kavramları
Sıfır hipotez • I.Tür ve II.Tür hata • Anlamlılık seviyesi • p-değeri
Basit tek-değişkenli ve iki-değişkenli
parametrik hipotez testi
μ için testi •

π için test • μ1-μ2 için test • π1-π2 için test •

σ1/σ2 için test
Tek-değişkenli ve iki-değişkenli
parametrik olmayan test analizi
Medyan testi • Ki-kare testi • Pearson ki-kare testi • Phi katsayısı • Wald testi • Mann-Whitney U testi • Wilcoxon'in işaretli sıralama testi
Korelasyon
ve
Regresyon analizi
Korelasyon
Pearson çarpım-moment korelasyonu • Sıralama korelasyonu ( Spearman'in rho • Kendall'in tau)
Doğrusal regresyon
Regresyon analizi  • Doğrusal model • Genel doğrusal model • Genelleştirilmiş doğrusal model
Doğrusal olmayan regresyon
Parametrik olmayan • Yarıparametrik • Logistik
Varyans analizi
Tek-yönlü varyans analizi • Kovaryans analizi • Bloklu tek-yönlü varyans analizi • Etki karışımı değişkeni
Çokdeğişkenli istatistik
Çokdeğişkenli regresyon • temel bileşenler · Faktör analizi • Kanonik korelesyon • Uygunluk analizi • Kümeleme analizi
Zaman serileri analizi
Yapısal model tanımlanması
Zaman serisi yapisal model ögeleri • Zaman serisi ögeleri saptanması • Zaman grafiği • Korrelogram
Zaman serileri kestirim teknik ve modelleri
Dekompozisyon • Trend uygulama kestirimi • Üssel düzgünleştirme • ARIMA modelleri • Box–Jenkins • Spektral yoğunluk kestirimi
Kestirim değerlendirmesi
Zaman seri kestirim değerlendirmesi
Sağkalım analizi
Sağkalım fonksiyonu • Kaplan–Meier • Log-sıra testi • Başarısızlık oranı • orantılı tehlikeler modeli
Kategori • Outline • Endeks
  • g
  • t
  • d
Halk sağlığı
Genel
Oksoloji  • Biyolojik tehlike  • Baş Tıp Görevlisi  • Kültürel yetkinlik  • Sapkınlık  • Çevre sağlığı  • Ötenik  • Genomik  • Küreselleşme ve hastalık  • Sağlık ekonomisi  • Sağlık okuryazarlığı  • Sağlık politikaları  • (Sağlık sistemi  • Sağlık reformu •Kamu sağlığı yasası) • Anne sağlığı •Tıbbi antropoloji •Tıp sosyolojisi •Ruh sağlığı •İlaç politikası •Halk sağlığı laboratuvarı •Üreme sağlığı  • Sosyal psikoloji  • Sağlık ve hastalık sosyolojisi  • Tropik hastalık
Koruyucu sağlık hizmetleri
Tek sağlık  • Davranış değişikliği  • Aile ücretleri  • Sağlığın teşviki ve geliştirilmesi  • İnsan beslenmesi  • Hijyen  • (El yıkama  • Enfeksiyon kontrolü  • Ağız hijyeni)  • İş güvenliği ve sağlığı  • (Ergonomi  • Yaralanmayı önleme  • Tıp  • Hemşirelik)  • Hasta güvenliği  • (Kurumu)  • Farmakovijilans  • Güvenli seks  • (Cinsel yolla bulaşan hastalık)  • Temizlik  • (Fekal-oral bulaşma  • Açık dışkılama  • Vektör kontrolü  • Su kaynaklı hastalıklar)  • Sigarayı bırakma  • Aşılama  • Veteriner Halk Sağlığı
Toplum sağlığı
Biyoistatistik  • Çocuk ölümleri  • Toplum sağlığı  • Epidemiyoloji  • Küresel sağlık  • Sağlık etki değerlendirmesi  • Sağlık sistemi  • Bebek ölümü  • Açık kaynaklı sağlık yazılımı  • Kamu sağlığı bilişimi  • Sağlığın sosyal belirleyicileri  • (Sağlık eşitliği  • Irk ve sağlık)  • Sosyal tıp
Biyolojik ve
epidemiyolojik istatistikler
Hipotez testi  • Vaka kontrol çalışması  • Randomize kontrollü çalışma  • Klinik epidemiyoloji  • ROC eğrisi  • Öğrencilere t-testi  • Z-test  • Varyans analizi  • Regresyon  • Göreceli risk  • İstatistik yazılımı  • (SAS  • SPSS  • Stata)
Bulaşıcı ve epidemik
hastalıkların önlenmesi
Cinsel yolla bulaşan hastalık  • Aşı çalışmaları  • tropikal hastalıklar  • Enfeksiyon hastalıkları  • Salgın (Epidemi)  • Pandemi  • Surveyans  • Karantina  • sağlık ekonomisi
Gıda hijyeni ve
sertifikasyon sistemleri
Gıda güvenliği  • Gıda katkısı  • Gıda işleme  • Certified Agricultural  • GMP  • GSP  • GAP  • CSP  • ISO  • HACCP  • CCP  • FSSC  • IFS  • BRCGS  • Helal (İslam)  • Gıda mühendisliği  • Food microbiology  • food Chemistry  • food technology  • Genetik mühendisliği  • Veteriner hekim  • Ziraat mühendisliği
Sağlık davranışları
bilimleri
Sağlık inanç modeli  • rasyonel davranış modeli  • planlı davranış teorisi  • Transteorik model  • Sosyal bilişsel kuram  • Sosyal Destek teorisi  • sağlık İletişimi  • önceki model  • Toplum sağlığı  • Ekosistem modeli
Sağlık ve
politika analizi
Politika analizi  • sigorta ekonomisi  • İstatistik  • Küresel sağlık  • sosyal güvenlik sistemi  • Muhasebe  • Sosyal psikoloji  • İletişim
Organizasyonlar
Eğitim
ve Geçmiş
Kuruluş ve Örgütler
Europe (Avrupa Hastalık Önleme ve Kontrol Merkezi  • Committee on the Environment, Public Health and Food Safety) India (Ministry of Health and Family Welfare)

U.S. (Amerika Birleşik Devletleri Hastalık Kontrol ve Korunma Merkezleri  • Center for Minority Health  • Council on Education for Public Health  • Public Health – Seattle & King County  • Public Health Service)  • Globalization and Health  • Dünya Sağlık Örgütü  • World Toilet Organization

East Asia (Health and Welfare Ministry  • Gıda ve İlaç Dairesi  • Çevre Koruma Ajansı)
Eğitim
Bachelor of Science in Public Health  • Master of Public Health  • Doctor of Public Health  • European Programme for Intervention Epidemiology Training (EPIET)  • Health education  • Professional Further Education in Clinical Pharmacy and Public Health
Geçmiş
Sara Josephine Baker  • Samuel Jay Crumbine  • Carl Rogers Darnall  • Joseph Lister  • Margaret Sanger  • John Snow  • Mary Mallon  • Hastalık yapıcı mikrop teorisi  • Social hygiene movement
  • g
  • t
  • d
Yapay zekâ
Üretken yapay zekâ Yapay sinir ağları · Tarih (zaman çizelgesi)
Kavramlar
  • Üretken yapay zekâ
  • Parametre
    • Hiperparametre
  • Kayıp fonksiyonları
  • Regresyon
    • Önyargı-varyans değiş tokuşu
    • Çift iniş
    • Aşırı öğrenme
  • Kümeleme
  • Gradyan iniş
    • SGD
    • Yarı-Newton yöntemi
    • Eşlenik gradyan yöntemi
  • Geri yayılım
  • Dikkat
  • Konvolüsyon
  • Normalizasyon
    • Toplu norm
  • Aktivasyon
    • Softmax
    • Sigmoid
    • Doğrultucu
  • Geçit
  • Ağırlık başlatma
  • Düzenleme
  • Veri kümeleri
    • Arttırma
  • Sufle mühendisliği
  • Pekiştirmeli öğrenme
    • SARSA
    • Taklit
    • Politika gradyanı
  • Yayılma
  • Gizli yayılım model
  • Otoregresyon
  • Rakip
  • RAG
  • Tekinsiz vadi
  • RLHF
  • Kendi kendine denetlenen öğrenme
  • Yinelemeli kendini geliştirme
  • Kelime yerleştirme
  • Halüsinasyon
Uygulamalar
  • Makine öğrenimi
    • Bağlam içi öğrenme
  • Yapay sinir ağı
    • Derin öğrenme
  • Dil modeli
    • Geniş dil modeli
    • NMT
  • Yapay genel zekâ
Uygulamalar
Text
  • Word2vec
  • Seq2seq
  • GloVe
  • BERT
  • T5
  • Llama
  • Chinchilla AI
  • PaLM
  • GPT
    • 1
    • 2
    • 3
    • J
    • ChatGPT
    • 4
    • 4o
    • 4.5
    • o1
    • o3
  • Claude
  • Gemini
    • chatbot
  • Grok
  • LaMDA
  • BLOOM
  • Project Debater
  • IBM Watson
  • IBM Watsonx
  • Granite
  • PanGu-Σ
  • DeepSeek
  • Qwen
Karar verici
  • AlphaGo
  • AlphaZero
  • OpenAI Five
  • Otonom araba
  • MuZero
  • Eylem seçimi
    • AutoGPT
  • Robot kontrolü
İnsanlar
  • Alan Turing
  • Warren Sturgis McCulloch
  • Walter Pitts
  • John von Neumann
  • Claude Shannon
  • Marvin Minsky
  • John McCarthy
  • Nathaniel Rochester
  • Allen Newell
  • Cliff Shaw
  • Herbert A. Simon
  • Oliver Selfridge
  • Frank Rosenblatt
  • Bernard Widrow
  • Joseph Weizenbaum
  • Seymour Makalesi
  • Seppo Linnainmaa
  • Paul Werbos
  • Jürgen Schmidhuber
  • Yann LeCun
  • Geoffrey Hinton
  • John Hopfield
  • Yoshua Bengio
  • Lotfi A. Zadeh
  • Stephen Grossberg
  • Alex Graves
  • Andrew Ng
  • Fei-Fei Li
  • Alex Krizhevsky
  • Ilya Sutskever
  • Demis Hassabis
  • David Silver
  • Ian Goodfellow
  • Andrej Karpathy
Mimarlıklar
  • Nöral Turing makinesi
  • Ayrılabilir sinir bilgisayarı
  • Transformatör
    • Görüntü dönüştürücüsü (ViT)
  • Tekrarlayan sinir ağı (RNN)
  • Uzun kısa süreli bellek (LSTM)
  • Kapılı tekrarlayan birim (GRU)
  • Yankı durumu ağı
  • Çok katmanlı algılayıcı (MLP)
  • Konvolüsyonlu sinir ağı (CNN)
  • Kalıntı sinir ağı (RNN)
  • Otoyol ağı
  • Mamba
  • Oto kodlayıcı
  • Değişken oto kodlayıcı (VAE)
  • Üretici düşmanca ağ (GAN)
  • Grafik sinir ağı (GNN)
  • Şirketler
  • Projeler
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb119445648 (data)
  • GND: 4129903-6
  • LCCN: sh85112392
  • NDL: 00564579
  • NKC: ph125086
  • NLI: 987007529518905171
"https://tr.wikipedia.org/w/index.php?title=Regresyon_analizi&oldid=35985544" sayfasından alınmıştır
Kategori:
  • Regresyon analizi
Gizli kategoriler:
  • ISBN sihirli bağlantısını kullanan sayfalar
  • Webarşiv şablonu wayback bağlantıları
  • Commons kategori bağlantısı yerelde tanımlı olan sayfalar
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NDL tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 15.44, 5 Eylül 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Regresyon analizi
Konu ekle