Çeyrekler açıklığı - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Örnekler
    • 1.1 Tablo şeklinde veri ile
    • 1.2 Veriler bir basit kutu grafiği ile verilirse
  • 2 Olasılık dağılımları için çeyrekler açıklığı
  • 3 Ayrıca bakınız

Çeyrekler açıklığı

  • العربية
  • Català
  • کوردی
  • Deutsch
  • English
  • Español
  • Euskara
  • فارسی
  • Français
  • עברית
  • Bahasa Indonesia
  • İtaliano
  • ಕನ್ನಡ
  • Nederlands
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Slovenščina
  • Sunda
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Çeyrekler açıklığı" – haber · gazete · kitap · akademik · JSTOR
(Temmuz 2024) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)

Betimsel istatistikte çeyrekler açıklığı sıralanmış bir veri dizisinin orta yarısını (%50'sini) kapsayan ve üçüncü dörtte birlik ve birinci dörtte birlik aralığını veya farkını (yani Q3 - Q1) gösteren bir istatistiksel yayılma ölçüsüdür. Birinci dörtte birlik sıralanmış veri dizisinin ilk %25'inden büyük ve üçüncü dörtte birlik sıralanmış veri dizisinin %25'inden daha küçük olduğu için, bu iki dörtte birlik arasında kalan veri yüzdesi %50'dir. Çeyrekler açıklığı ölçüm birimi veri ölçüm birimi ile aynıdır. İngilizcesi IQR'dir (Inter Quantile Range).

Çeyrekler açıklığı sıralanmış veriler içinde aşırı küçük veya aşırı büyük uçsal değerlerden (yani aykırı değerlerden) etkilenmez. Özel bir istatistiksel terimle çeyrekler açıklığı güçlü (en:robust) bir yayılma ölçüsüdür. Bu nedenle "istatistiksel yayılma" ölçüsü olarak açıklıka tercih edilir. Eğer alışılagelen yayılma ölçüsü olarak genellikle kullanılan varyans veya standart sapma için mevcut olduğu bilinen dezavantajlar (ilk akla gelen; çarpıklık) pratik bir problem için sorun yaratıyorsa (örneğin veri dizisi içinde çok aşırı bir veya birkaç aykırı değer varsa) çeyrekler açıklığı varyans ve standart sapma yerine tercih edilir.

Örnekler

[değiştir | kaynağı değiştir]
Kutu grafiği (bir çeyrekler açıklığı ile) ve bir Normal N(0,1σ2) anakitle için olasılık yoğunluk fonksiyonu

Tablo şeklinde veri ile

[değiştir | kaynağı değiştir]
i x[i] Dörttebirlik
1 102
2 104
3 105 Q1
4 107
5 108
6 109 Q2 (medyan)
7 110
8 112
9 115 Q3
10 116
11 118

Bu tabloda verilmiş veriler için "çeyrekler açıklığı"

= = 115 − 105 = 10.

Veriler bir basit kutu grafiği ile verilirse

[değiştir | kaynağı değiştir]
                    |                   |
                    |       +-----+-+   | 
  o           *     |-------|     | |---|
                    |       +-----+-+   |
                    |                   | 
+---+---+---+---+---+---+---+---+---+---+---+---+   Sayılar ekseni
0   1   2   3   4   5   6   7   8   9   10  11  12

Bu veri seti için

  • birinci (alt) dörttebirlik ( Q 1 {\displaystyle Q_{1}} {\displaystyle Q_{1}}, x .25 {\displaystyle x_{.25}} {\displaystyle x_{.25}}) = 7
  • medyan (ikinci dörttebirlik) ( M e d y a n {\displaystyle Medyan} {\displaystyle Medyan}, x .5 {\displaystyle x_{.5}} {\displaystyle x_{.5}}) = 8.5
  • üçüncü (üst) dörttebirlik ( Q 3 {\displaystyle Q_{3}} {\displaystyle Q_{3}}, x .75 {\displaystyle x_{.75}} {\displaystyle x_{.75}}) = 9
  • çeyrekler açıklığı, = Q 3 − Q 1 = 2 {\displaystyle =Q_{3}-Q_{1}=2} {\displaystyle =Q_{3}-Q_{1}=2}

Olasılık dağılımları için çeyrekler açıklığı

[değiştir | kaynağı değiştir]

Bir sürekli olasılık dağılımı için çeyrekler açıklığı, önce cebirsel olarak, olasılık yoğunluk fonksiyonunun integralini alarak hesaplanır ve bu yığmalı dağılım fonksiyonunu verir. Yığmalı dağılım fonksiyonunun negatif sonsuz (-∞) değerden 0,25 değere kadar bulunan integral değeri birinci dörttebirliği verir. Yine negatif sonsuzdan (-∞) 0,75 değere kadar alınan integral ise dörttebirliği verir. Bunlar formüller halinde şöyle ifade edilir:
Q 1 = CDF − 1 ( 0.25 ) {\displaystyle Q1={\text{CDF}}^{-1}(0.25)} {\displaystyle Q1={\text{CDF}}^{-1}(0.25)}

Q 3 = CDF − 1 ( 0.75 ) {\displaystyle Q3={\text{CDF}}^{-1}(0.75)} {\displaystyle Q3={\text{CDF}}^{-1}(0.75)}
Burada Q1: birinci dörttebirlik, Q3: üçüncü dörttebirlik ve CDF:yığmalı dağılım fonksiyonu olur.

Ancak birçok sürekli olasılık dağılımı için olasılık yoğunluk fonksiyonunun integralını almanın çok zor olduğu bilinmektedir. Herhangi başka bir yöntemle yığmalı dağılım fonksiyonu da bulunabilirse de uygun olur. Bir başka yöntem olarak yığmalı dağılım gösterimi kullanılabilir. Eğer gösterim çok iyi ve uygun ölçekli yapılmış ise, gösterimsel olarak da yığmalı olasılık dağılımı eğrisi üzerinde dörttebirlikler hemen bulunabilir.

Bazı olasılık dağılımları için medyan ve çeyrekler açıklığı değerleri şunlardır:

Dağılım Medyan Çeyrekler açıklığı
Normal dağılım μ 2 Φ−1(0.75) ≈ 1.349 σ {\displaystyle \sigma \,} {\displaystyle \sigma \,}
Laplace dağılımı μ 2b ln(2)
Cauchy dağılımı μ 2 γ {\displaystyle 2\gamma \,} {\displaystyle 2\gamma \,}

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Dörttebirlik
  • İstatistiksel yayılma ve sapma
  • Açıklık
  • g
  • t
  • d
İstatistik
Betimsel istatistik
Sürekli veriler
Merkezî konum
Ortalama (Aritmetik, Geometrik, Harmonik) • Medyan • Mod
Yayılma
Açıklık • Standart sapma • Varyasyon katsayısı • Çeyrekler açıklığı • Kesirlilikler (kantil) (Dörttebirlik, Ondabirlik, Yüzdebirlik)
Dağılım şekli
Varyans • Çarpıklık • Basıklık • Moment (matematik)
İstatistiksel tablolar
Sıklık dağılımı • Çoklu sayılı özetleme tabloları • İlişki tablosu • Çoklu-yönlü sınıflandırma tabloları
İstatistiksel grafikler
Dairesel grafik • Çubuk grafiği • Kutu grafiği • Dal-yaprak grafikleri • Kontrol diyagramı • Histogram • Sıklık çizelgesi • Q-Q grafiği • Serpilme diyagramı
Veri toplama
Örnek tasarımı
Anakütle • Basit rassal örnekleme Örüntülü örnekleme • Tabakalı örnekleme • Küme örneklemesi • Çok aşamalı örnekleme
Deneysel tasarım
Anakütle • İstatistiksel deneysel tasarım tipleri • Deneysel hata • Yineleme • Bloklama • Duyarlılık ve belirleme
Örneklem kavramları
Örneklem büyüklüğü • Sınama gücü • Etki büyüklüğü • Örnekleme dağılımı • Standart hata
Çıkarımsal istatistik
ve
İstatistiksel kestirim ve testler
Çıkarımsal analiz tipleri
Kestirim • Parametrik çıkarımsal analiz • Parametrik olmayan çıkarımsal analiz • Bayesci çıkarımsal analiz • Meta-analiz
Çıkarımsal kestirim
Genel kestirim kavramları
Momentler yöntemi • Enbüyük olabilirlik • Enbüyük artçıl • Bayes-tipi kestirimci • Minimum uzaklık • Maksimum aralık verme
Tekdeğişkenli kestirim
Kestirim • Güven aralığı • İnanılır aralık
Hipotez testi
İstatistiksel test ana kavramları
Sıfır hipotez • I.Tür ve II.Tür hata • Anlamlılık seviyesi • p-değeri
Basit tek-değişkenli ve iki-değişkenli
parametrik hipotez testi
μ için testi •

π için test • μ1-μ2 için test • π1-π2 için test •

σ1/σ2 için test
Tek-değişkenli ve iki-değişkenli
parametrik olmayan test analizi
Medyan testi • Ki-kare testi • Pearson ki-kare testi • Phi katsayısı • Wald testi • Mann-Whitney U testi • Wilcoxon'in işaretli sıralama testi
Korelasyon
ve
Regresyon analizi
Korelasyon
Pearson çarpım-moment korelasyonu • Sıralama korelasyonu ( Spearman'in rho • Kendall'in tau)
Doğrusal regresyon
Regresyon analizi  • Doğrusal model • Genel doğrusal model • Genelleştirilmiş doğrusal model
Doğrusal olmayan regresyon
Parametrik olmayan • Yarıparametrik • Logistik
Varyans analizi
Tek-yönlü varyans analizi • Kovaryans analizi • Bloklu tek-yönlü varyans analizi • Etki karışımı değişkeni
Çokdeğişkenli istatistik
Çokdeğişkenli regresyon • temel bileşenler · Faktör analizi • Kanonik korelesyon • Uygunluk analizi • Kümeleme analizi
Zaman serileri analizi
Yapısal model tanımlanması
Zaman serisi yapisal model ögeleri • Zaman serisi ögeleri saptanması • Zaman grafiği • Korrelogram
Zaman serileri kestirim teknik ve modelleri
Dekompozisyon • Trend uygulama kestirimi • Üssel düzgünleştirme • ARIMA modelleri • Box–Jenkins • Spektral yoğunluk kestirimi
Kestirim değerlendirmesi
Zaman seri kestirim değerlendirmesi
Sağkalım analizi
Sağkalım fonksiyonu • Kaplan–Meier • Log-sıra testi • Başarısızlık oranı • orantılı tehlikeler modeli
Kategori • Outline • Endeks
"https://tr.wikipedia.org/w/index.php?title=Çeyrekler_açıklığı&oldid=33565172" sayfasından alınmıştır
Kategoriler:
  • Betimsel istatistik
  • İstatistiksel yayılma ve sapma
Gizli kategori:
  • Kaynakları olmayan maddeler Temmuz 2024
  • Sayfa en son 22.04, 27 Temmuz 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Çeyrekler açıklığı
Konu ekle