Doğrusal ayırma analizi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kaynakça

Doğrusal ayırma analizi

  • العربية
  • Беларуская
  • Català
  • English
  • Esperanto
  • Español
  • فارسی
  • Français
  • Hrvatski
  • Magyar
  • Bahasa Indonesia
  • İtaliano
  • 한국어
  • Polski
  • Русский
  • Sunda
  • Українська
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Makine öğrenmesi ve
veri madenciliği
Problemler
  • Sınıflandırma
  • Kümeleme
  • Regresyon
  • Anomali tespiti
  • Association rules
  • Pekiştirmeli öğrenme
  • Yapılandırılmış tahmin
  • Öznitelik mühendisliği
  • Öznitelik öğrenmesi
  • Öznitelik çıkarımı
  • Online öğrenme
  • Yarı-gözetimli öğrenme
  • Gözetimsiz öğrenme
  • Sıralama öğrenme
  • Gramer Tümevarımı
Gözetimli öğrenme
  • Karar ağacı
  • Birlik öğrenmesi
  • k-YK
  • Doğrusal regresyon
  • Naive Bayes
  • Sinir ağları
  • Lojistik regresyon
  • Relevance vector machine (RVM)
  • Support vector machine (SVM)
  • Rastgele orman
Kümeleme
  • BIRCH
  • Hiyerarşik
  • k-means
  • Beklenti maksimizasyon

  • DBSCAN
  • OPTICS
  • Mean-shift
Boyut indirgeme
  • Faktör analizi
  • CCA
  • ICA
  • LDA
  • NMF
  • PCA
  • t-SNE
Yapılandırılmış tahmin
  • Grafiksel modeller (Bayes ağları, CRF, HMM)
Anomali tespiti
  • k-NN
  • Local outlier factor
Sinir ağları
  • Perseptron
  • Otokodlayıcı
  • Derin öğrenme
  • RNN
  • LSTM
  • Kısıtlı Boltzmann makinesi
  • SOM
  • Kıvrımlı sinir ağları
Pekiştirmeli öğrenme
  • Q-Learning
  • SARSA
  • Temporal Difference (TD)
Teori
  • Bias-variance ikilemi
  • Hesaplamalı öğrenme teorisi
  • Empirik risk minimizasyonu
  • Occam learning
  • PAC learning
  • İstatistiki öğrenme teorisi
  • VC theory
Konferanslar ve dergiler
  • NIPS
  • ICML
  • ML
  • JMLR
  • ArXiv:cs.LG
  • g
  • t
  • d

İstatistikte, doğrusal ayırma analizi (DAA) ya da doğrusal diskriminant analizi, özniteliklerin bir doğrusal birleşimini bularak veriyi sınıflara ayırmaya yarayan yöntem.[1][2] Elde edilen model bir doğrusal sınıflandırıcı halinde ya da daha yaygın olarak öncül boyut indirgeme analizinde kullanılır.

Bazen orijinal terimin kısaltması olan LDA (İngilizce: Linear discriminant analysis) şeklinde de kısaltılır.

Doğrusal ayırma analizi, bir verideki değişkenlerin, veriyi en iyi açıklayan doğrusal birleşimini incelemeleri açısından temel bileşen analizi (TBA) ve faktör analizi ile yakından ilişkilidir.[3] DAA, verilen sınıfları ayıran bir birleşim bulurken, TBA sınıfları göz ardı eder. Faktör analizi, sınıf içi benzerlik yerine varyansı incelemesi ve gizli değişkenleri modellemesi ile DAA'dan farklıdır.

  • 1936 yılında R. A. Fischer tarafından geliştirilen bir sınıflama metodudur.
  • Basit olmasına rağmen kompleks problemlerde iyi sonuçlar üreten bir modeldir.
  • Machine Learning uygulamaları için preprocessing aşamasında boyut azaltma tekniği olarak kullanılır.
  • Amaç, overfittingi önlemek ve aynı zamanda hesaplama maliyetlerini azaltmaktır.
  • Genel olarak PCA'a (Principal Component Analysis) benzesede LDA'in çalışma mantığında Sınıflar arasındaki uzaklığı maksimize etmek vardır.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Doğan, M.I.; Orman, A.; Örkcü, M.; Örkcü, H.H. "A new approach based on regression analysis and mathematical programming to multi-group classification problems" (PDF). Journal Of The Faculty Of Engineering And Architecture Of Gazi University. 34 (4). ss. 1939-1955. 27 Şubat 2020 tarihinde kaynağından arşivlendi (PDF)31 Temmuz 2020. 
  2. ^ Güllüoğlu, Caner (Haziran 2010). Doğrusal diskriminant analizi için iyileştirme algoritmaları (Yüksek Lisans). Bahçeşehir Üniversitesi. 2 Mart 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 31 Temmuz 2020. 
  3. ^ Martinez, A. M.; Kak, A. C. (2001). "PCA versus LDA" (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 23 (=2): 228-233. doi:10.1109/34.908974. 11 Ekim 2008 tarihinde kaynağından (PDF) arşivlendi31 Temmuz 2020. 
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • LCCN: sh85038374
  • NLI: 987007555292305171
"https://tr.wikipedia.org/w/index.php?title=Doğrusal_ayırma_analizi&oldid=33877689" sayfasından alınmıştır
Kategoriler:
  • Boyut indirgeme
  • İstatistiksel sınıflandırma
Gizli kategoriler:
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 18.26, 24 Eylül 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Doğrusal ayırma analizi
Konu ekle