Sıra teorisi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Örneksel yaklaşım
    • 1.1 Sıralamalara örnekler
  • 2 Sıralama çeşitleri
  • 3 Sıralamaların önemi

Sıra teorisi

  • العربية
  • Български
  • Català
  • Čeština
  • Dansk
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Français
  • Galego
  • Hrvatski
  • Bahasa Indonesia
  • İtaliano
  • 한국어
  • Bahasa Melayu
  • Nederlands
  • Português
  • Русский
  • Simple English
  • Slovenčina
  • Slovenščina
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Sıra teorisi" – haber · gazete · kitap · akademik · JSTOR
(Temmuz 2024) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)

Sıra teorisi, ikili bağıntıları kullanma sırasının sezgisel kavramını inceleyen bir matematik dalıdır. "Bu, şundan daha küçüktür" veya "bu, şundan daha öncedir" gibi durumları inceler.

Örneksel yaklaşım

[değiştir | kaynağı değiştir]

Bir küme ve o küme üzerinde aşağıda tarif edilecek olan ikili bir bağıntıyı içeren aksiyomatik sistemlere denir. Bilinen sıralama ≤ {\displaystyle \leq } {\displaystyle \leq } bağıntısının soyutlanmasıyla elde edilirler. Kümemize X, bağıntımıza R adını verecek olursak, aşağıdaki aksiyomların sağlandığını varsayarız.

  • X kümesinin her a elemanı için R(a,a) bağıntısı sağlanmalıdır. ( a ≤ a {\displaystyle a\leq a} {\displaystyle a\leq a} şeklinde düşünülebilir, yansıma özelliği olarak bilinir.)
  • X kümesinin herhangi iki a ve b elemanı için R(a, b) ve R(b,a) bağıntıları sağlanıyorsa, a = b {\displaystyle a=b} {\displaystyle a=b} olmalıdır. (hem a ≤ b {\displaystyle a\leq b} {\displaystyle a\leq b} hem de b ≤ a {\displaystyle b\leq a} {\displaystyle b\leq a}sağlanıyorsa a=b dir diye düşünülebilir, antisimetrik olma özelliği olarak bilinir.)
  • X kümesinin herhangi üç a, b ve c elemanı için hem R(a, b) hem de R(b,c) bağıntıları sağlanıyorsa, o zaman R(a,c) bağıntısı da sağlanmalıdır. (hem a ≤ b {\displaystyle a\leq b} {\displaystyle a\leq b} hem de b ≤ c {\displaystyle b\leq c} {\displaystyle b\leq c} ise a ≤ c {\displaystyle a\leq c} {\displaystyle a\leq c} de olmalıdır diye de düşünülebilir, geçişkenlik özelliği olarak bilinir)

Sıralamalara örnekler

[değiştir | kaynağı değiştir]

(Doğal sayılar, ≤ {\displaystyle \leq } {\displaystyle \leq } bağıntısı) -- (Rasyonel sayılar, ≤ {\displaystyle \leq } {\displaystyle \leq } bağıntısı) -- (Reel sayılar, ≤ {\displaystyle \leq } {\displaystyle \leq } bağıntısı) -- (Kümeler Uzayı*, ⊂ {\displaystyle \subset } {\displaystyle \subset } bağıntısı)


∗ {\displaystyle *} {\displaystyle *}Teknik olarak bir küme değildir. Ancak bu sorun yaratmaz.

Sıralama çeşitleri

[değiştir | kaynağı değiştir]
  • Eğer elimizdeki sıralama nesnesi, yukardaki aksiyomlara ek başka varsayımlar sağlamıyorsa elimizdeki sıralamaya "kısmi sıralama" denir. Yani her sıralama bir kısmi sıralamadır.
  • Eğer yukardaki aksiyomlara ek olarak X ten seçeceğimiz herhangi iki elemanı karşılaştırabiliyorsak (yani R(a, b) ve R(b,a) bağıntılarından biri mutlaka doğru olmak zorundaysa) o zaman elimizdeki sıralamaya doğrusal sıralama denir. Yukardaki örneklerden (Doğal Sayılar, ≤ {\displaystyle \leq } {\displaystyle \leq }), (Rasyonel Sayılar, ≤ {\displaystyle \leq } {\displaystyle \leq }) ve (Reel Sayılar, ≤ {\displaystyle \leq } {\displaystyle \leq }) aynı zamanda doğrusal sıralamalara da örneklerken, (Kümeler Uzayı, ⊂ {\displaystyle \subset } {\displaystyle \subset } bağıntısı), doğrusal olmayan kısmi bir sıralamadır. Nedeni herhangi iki kümeyi ⊂ {\displaystyle \subset } {\displaystyle \subset } bağıntısına göre karşılaştırmanın mümkün olmamasıdır. Yani biri diğerini içermeyen iki kümenin varlığıdır.
  • Son olarak, doğrusal sıralama şartlarını sağlayan (X, R) sıralamalarından, "X in her alt kümesinin bir en küçük eleman içermesi şartı"nı sağlayanlara iyi-sıralama denir. Yukarıdaki örneklerden reel sayılar ve doğal sayılar iyi-sıralama iken, rasyonel sayılar iyi sıralama değildir. Örnek olarak "karekök ikiden büyük rasyonel sayılar" kümesinin en küçük bir elemanı olmaması verilebilir.
  • Boş olmayan her sonlu kümenin bir en üst ve en alt kümeye sahip olduğu kafesler elde edilir.

Sıralamaların önemi

[değiştir | kaynağı değiştir]
  • Her sıralama nesnesi bir topolojik uzay yapısına sahiptir. Bu yapının açık kümelerinin temeli "öyle x elemanları ki a ≤ x ≤ b {\displaystyle a\leq x\leq b} {\displaystyle a\leq x\leq b}" şeklinde ifade edilebilen kümelerden oluşur, a veya b az önceki formülde gözükmüyor da olabilirler.
  • Zorn'un Lemması, sayesinde kısmi sıralamalar matematiğin pek çok alanında uygulama bulmuşlardır. Mesela halka'larda maksimal ideallerin varlığı Zorn'un Lemması ve ideallarin ⊂ {\displaystyle \subset } {\displaystyle \subset } bağıntısına göre kısmi bir sıralama oluşturduğu gerçeği kullanılarak ispatlanır.
  • Reel sayılar kümesinin rasyonel sayılar kümesini kullanılarak oluşturulmasının bir temeli de Alman matematikçi Richard Dedekind tarafından verilmiştir. Dedekind'in yöntemi rasyonel sayılar kümesinin bir iyi-sıralama haline getirilmesine dayanır. Diğer yöntem ise "bütünleme"dir.
  • İyi sıralamar matematikte nispeten nadir gözlenen, çok güçlü özellikler içeren objelerdir. Bu ilke ve kümeler teorisi arasındaki ilişki hakkında bilgi için ayrıca İyi-sıralılık ilkesi Makalesi'ne bakabilirsiniz.
  • g
  • t
  • d
Cebir
Alanlar
  • Soyut cebir
  • Kategori teorisi
  • Temel cebir
  • K-teori
  • Değişmeli cebir
  • Geçişli olmayan cebir
  • Sıra teorisi
  • Evrensel cebir
  • Homolojik cebir
  • Bilgisayar cebri (Boole cebri  • İletişim sistemleri cebiri  • İlişkisel cebir)
  • Mantıksal Cebir
  • Temsil teorisi
Cebirsel yapılar
  • Grup teorisi (Grup)
  • Halka teorisi (Halka)
  • Modül teorisi (Modül)
  • Cisim
  • Alan
  • Polinom Halkaları (Polinom)
  • Birleşmeli cebir
  • Lie cebiri
Lineer cebir
  • Matris teorisi
  • Vektör uzayı (Vektör  • Vektör hesabı)
  • Modül
  • İç çarpım uzayı (Nokta çarpım)
  • Hilbert uzayı
Çokludoğrusal cebir
  • Tensör cebri (Tensör)
  • Dış cebir
  • Simetrik cebir
  • Geometrik cebir (Çoklu vektör)
Listeler
  • Soyut cebir
  • Cebirsel yapılar
  • Grup teorisi
  • Doğrusal cebir
  • Sophus Lie
Tablolar
  • Lie gruplarının tablosu
Sözlükler
  • Doğrusal cebir
  • Cisim teorisi
  • Halka teorisi
  • Sıra teorisi
İlgili konular
  • Matematik
  • Cebir tarihi
  • Cebirsel geometri
  • Cebirsel kombinatorik
  • Cebirsel topoloji
  • Cebirsel sayı teorisi
  • Cebirin temel teoremi
  • Üreteç
  • Heyting cebri
  • Süper açıkorur cebir
  • Kac-Moody cebiri
  • Hopf cebiri
  • Poisson cebri
  • Heisenberg cebri
  • Kategori Kategori
  • Vikikitap sayfası Wikibooks
    • Temel
    • Lineer
    • Soyut
  • Vikiversite sayfası Wikiversity
    • Lineer
    • Soyut
  • g
  • t
  • d
Matematiğin genel alanları
  • Matematik tarihi
  • Matematiğin ana hatları
  • Matematiğin dalları
Analiz
  • Diferansiyel denklemler
  • Fonksiyonel analiz
  • Gerçel analiz
  • Harmonik analiz
  • Hiperkompleks analiz
  • Kalkülüs
  • Karmaşık analiz
  • Ölçü teorisi
Ayrık matematik
  • Çizge teorisi
  • Kombinatorik
  • Sıra teorisi
Cebir
  • Basit cebir
  • Çokludoğrusal cebir
  • Değişmeli cebir
  • Doğrusal cebir
  • Evrensel cebir
  • Grup teorisi
  • Homolojik cebir
  • Soyut cebir
Geometri
  • Analitik geometri
  • Aritmetik geometri
  • Ayrık geometri
  • Cebirsel geometri
  • Diferansiyel geometri
  • Öklid geometrisi
  • Sonlu geometri
Hesaplamalı matematik
  • Algoritmalar teorisi
  • Bilgisayar bilimi
  • Hesaplamalı karmaşıklık teorisi
  • Nümerik analiz
  • Optimizasyon
  • Sembolik hesap
Matematiğin temelleri
  • Bilgi teorisi
  • Kategori teorisi
  • Küme teorisi
  • Matematik felsefesi
  • Matematiksel mantık
  • Tip teorisi
Sayılar teorisi
  • Analitik sayı teorisi
  • Aritmetik
  • Cebirsel sayı teorisi
  • Diyofant geometrisi
Topoloji
  • Cebirsel topoloji
  • Diferansiyel topoloji
  • Genel topoloji
  • Geometrik topoloji
  • Homotopi teorisi
Uygulamalı matematik
  • İstatistik
  • Matematiksel biyoloji
  • Matematiksel ekonomi
  • Finansal matematik
  • Matematiksel fizik
  • Matematiksel kimya
  • Matematiksel psikoloji
  • Matematiksel sosyoloji
  • Mühendislik matematiği
  • Olasılık teorisi
  • Sistem bilimi
    • Kontrol teorisi
    • Oyun teorisi
    • Yöneylem araştırması
İlişkin konular
  • Matematikçiler
    • Matematikçi listeleri
  • Matematik eğitimi
  • Matematikçiler hakkındaki filmler
"https://tr.wikipedia.org/w/index.php?title=Sıra_teorisi&oldid=35406011" sayfasından alınmıştır
Kategoriler:
  • Sıralama
  • Sıra teorisi
Gizli kategori:
  • Kaynakları olmayan maddeler Temmuz 2024
  • Sayfa en son 14.19, 27 Mayıs 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Sıra teorisi
Konu ekle