Kısmi türev - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tanım

Kısmi türev

  • العربية
  • Asturianu
  • Azərbaycanca
  • Башҡортса
  • Беларуская
  • Български
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Magyar
  • Bahasa Indonesia
  • Íslenska
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Lietuvių
  • Македонски
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • தமிழ்
  • Tagalog
  • Українська
  • Tiếng Việt
  • 中文
  • 文言
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Kismi Difransiyel Denklemler sayfasından yönlendirildi)
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Kısmi türev" – haber · gazete · kitap · akademik · JSTOR
(Temmuz 2024) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Kalkülüs
Kalkülüs
Temel
  • Kalkülüsün temel teoremi
  • Limit
  • Süreklilik
  • Rolle teoremi
  • Ortalama değer teoremi
  • Ters fonksiyon teoremi
Türev
  • Çarpma kuralı
  • Bölme kuralı
  • Zincir kuralı
  • Örtülü türev
  • Taylor teoremi
  • Bağımlı oranlar
  • Türev listesi
  • L'Hopital kuralı
  • Diferansiyel denklemler
İntegral
  • İntegral tablosu
  • Has olmayan integral
  • İntegralle hacim hesabı

İntegral Alma Yöntemleri:

  • Kısmi İntegrasyon
  • değişken değiştirme
Çok değişkenli
  • Kısmi türev
  • Çokkatlı integral
  • Çizgi integrali
  • Yüzey integrali
  • Hacim integrali
Vektör hesabı
  • Matris
  • Tensör
  • Jacobi
  • Hesse
  • Gradyan
  • g
  • t
  • d

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

Tanım

[değiştir | kaynağı değiştir]

z : R n × R n → R {\displaystyle z:{{\mathbb {R} }^{n}}\times {{\mathbb {R} }^{n}}\to \mathbb {R} } {\displaystyle z:{{\mathbb {R} }^{n}}\times {{\mathbb {R} }^{n}}\to \mathbb {R} }

z = f ( x 1 , x 2 , . . . , x m , . . . , x n ) {\displaystyle z=f({{x}_{1}},{{x}_{2}},...,{{x}_{m}},...,{{x}_{n}})} {\displaystyle z=f({{x}_{1}},{{x}_{2}},...,{{x}_{m}},...,{{x}_{n}})}

biçiminde tanımlanan n tane bağımsız değişkene bağlı sürekli z fonksiyonunun diğer değişkenler sabit tutularak herhangi bir değişkendeki Δ x m {\displaystyle \Delta {{x}_{m}}} {\displaystyle \Delta {{x}_{m}}} değişimine karşılık fonksiyonun değişim hızı

Δ z Δ x m = f ( x 1 , x 2 , . . . , x m + Δ x m , . . . , x n ) − f ( x 1 , x 2 , . . . , x m , . . . , x n ) Δ x m {\displaystyle {\frac {\Delta z}{\Delta {{x}_{m}}}}={\frac {f({{x}_{1}},{{x}_{2}},...,{{x}_{m}}+\Delta {{x}_{m}},...,{{x}_{n}})-f({{x}_{1}},{{x}_{2}},...,{{x}_{m}},...,{{x}_{n}})}{\Delta {{x}_{m}}}}} {\displaystyle {\frac {\Delta z}{\Delta {{x}_{m}}}}={\frac {f({{x}_{1}},{{x}_{2}},...,{{x}_{m}}+\Delta {{x}_{m}},...,{{x}_{n}})-f({{x}_{1}},{{x}_{2}},...,{{x}_{m}},...,{{x}_{n}})}{\Delta {{x}_{m}}}}}

Δ x m = h {\displaystyle \Delta {{x}_{m}}=h} {\displaystyle \Delta {{x}_{m}}=h}

∂ z ∂ x m = lim h → 0 f ( x 1 , x 2 , . . . , x m + h , . . . , x n ) − f ( x 1 , x 2 , . . . , x m , . . . , x n ) h {\displaystyle {\frac {\partial z}{\partial {{x}_{m}}}}={\underset {h\to 0}{\mathop {\lim } }}\,{\frac {f({{x}_{1}},{{x}_{2}},...,{{x}_{m}}+h,...,{{x}_{n}})-f({{x}_{1}},{{x}_{2}},...,{{x}_{m}},...,{{x}_{n}})}{h}}} {\displaystyle {\frac {\partial z}{\partial {{x}_{m}}}}={\underset {h\to 0}{\mathop {\lim } }}\,{\frac {f({{x}_{1}},{{x}_{2}},...,{{x}_{m}}+h,...,{{x}_{n}})-f({{x}_{1}},{{x}_{2}},...,{{x}_{m}},...,{{x}_{n}})}{h}}}

ifadesine z {\displaystyle z} {\displaystyle z} fonksiyonunun x m {\displaystyle {{x}_{m}}} {\displaystyle {{x}_{m}}} değişkenine göre kısmi türevi denir.

∂ f ∂ x m = f x m = D x m f = ∂ z ∂ x m = z x m {\displaystyle {\frac {\partial f}{\partial {{x}_{m}}}}={{f}_{{x}_{m}}}={{D}_{{x}_{m}}}f={\frac {\partial z}{\partial {{x}_{m}}}}={{z}_{{x}_{m}}}} {\displaystyle {\frac {\partial f}{\partial {{x}_{m}}}}={{f}_{{x}_{m}}}={{D}_{{x}_{m}}}f={\frac {\partial z}{\partial {{x}_{m}}}}={{z}_{{x}_{m}}}}

şeklinde gösterilir.

z = f ( x , y ) {\displaystyle z=f\left(x,y\right)} {\displaystyle z=f\left(x,y\right)} ise;

f x ( x , y ) = lim h → 0 f ( x + h , y ) − f ( x , y ) h {\displaystyle {{f}_{x}}\left(x,y\right)={\underset {h\to 0}{\mathop {\lim } }}\,{\frac {f\left(x+h,y\right)-f\left(x,y\right)}{h}}} {\displaystyle {{f}_{x}}\left(x,y\right)={\underset {h\to 0}{\mathop {\lim } }}\,{\frac {f\left(x+h,y\right)-f\left(x,y\right)}{h}}}

f y ( x , y ) = lim h → 0 f ( x , y + h ) − f ( x , y ) h {\displaystyle {{f}_{y}}\left(x,y\right)={\underset {h\to 0}{\mathop {\lim } }}\,{\frac {f\left(x,y+h\right)-f\left(x,y\right)}{h}}} {\displaystyle {{f}_{y}}\left(x,y\right)={\underset {h\to 0}{\mathop {\lim } }}\,{\frac {f\left(x,y+h\right)-f\left(x,y\right)}{h}}}

Örnek:

f ( x , y ) = x 3 + x 2 y − y 3 f x = ( x 3 ) x + ( x 2 y ) x − ( y 3 ) x f x = 3 x 2 + 2 x y − 0 f x = 3 x 2 + 2 x y {\displaystyle {\begin{aligned}&f(x,y)={{x}^{3}}+{{x}^{2}}{y}-{{y}^{3}}\\&{{f}_{x}}={{\left({{x}^{3}}\right)}_{x}}+{{\left({{x}^{2}}y\right)}_{x}}-{{\left({{y}^{3}}\right)}_{x}}\\&{{f}_{x}}=3{{x}^{2}}+2xy-0\\&{{f}_{x}}=3{{x}^{2}}+2xy\\\end{aligned}}} {\displaystyle {\begin{aligned}&f(x,y)={{x}^{3}}+{{x}^{2}}{y}-{{y}^{3}}\\&{{f}_{x}}={{\left({{x}^{3}}\right)}_{x}}+{{\left({{x}^{2}}y\right)}_{x}}-{{\left({{y}^{3}}\right)}_{x}}\\&{{f}_{x}}=3{{x}^{2}}+2xy-0\\&{{f}_{x}}=3{{x}^{2}}+2xy\\\end{aligned}}}

"https://tr.wikipedia.org/w/index.php?title=Kısmi_türev&oldid=34829016" sayfasından alınmıştır
Kategoriler:
  • Çok değişkenli hesap
  • Türev
Gizli kategori:
  • Kaynakları olmayan maddeler Temmuz 2024
  • Sayfa en son 13.47, 22 Şubat 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Kısmi türev
Konu ekle