Gözetimli öğrenme - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tarihçe ve Gelişim
  • 2 Uygulama Alanları
  • 3 Avantaj ve Dezavantajlar
  • 4 Kaynakça

Gözetimli öğrenme

  • العربية
  • تۆرکجه
  • বাংলা
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • עברית
  • Հայերեն
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • ಕನ್ನಡ
  • 한국어
  • मराठी
  • Nederlands
  • ଓଡ଼ିଆ
  • Polski
  • Português
  • Runa Simi
  • Русский
  • Simple English
  • Shqip
  • Српски / srpski
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
  • 閩南語 / Bân-lâm-gí
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Denetimli öğrenme sayfasından yönlendirildi)
Makine öğrenmesi ve
veri madenciliği
Problemler
  • Sınıflandırma
  • Kümeleme
  • Regresyon
  • Anomali tespiti
  • Association rules
  • Pekiştirmeli öğrenme
  • Yapılandırılmış tahmin
  • Öznitelik mühendisliği
  • Öznitelik öğrenmesi
  • Öznitelik çıkarımı
  • Online öğrenme
  • Yarı-gözetimli öğrenme
  • Gözetimsiz öğrenme
  • Sıralama öğrenme
  • Gramer Tümevarımı
Gözetimli öğrenme
  • Karar ağacı
  • Birlik öğrenmesi
  • k-YK
  • Doğrusal regresyon
  • Naive Bayes
  • Sinir ağları
  • Lojistik regresyon
  • Relevance vector machine (RVM)
  • Support vector machine (SVM)
  • Rastgele orman
Kümeleme
  • BIRCH
  • Hiyerarşik
  • k-means
  • Beklenti maksimizasyon

  • DBSCAN
  • OPTICS
  • Mean-shift
Boyut indirgeme
  • Faktör analizi
  • CCA
  • ICA
  • LDA
  • NMF
  • PCA
  • t-SNE
Yapılandırılmış tahmin
  • Grafiksel modeller (Bayes ağları, CRF, HMM)
Anomali tespiti
  • k-NN
  • Local outlier factor
Sinir ağları
  • Perseptron
  • Otokodlayıcı
  • Derin öğrenme
  • RNN
  • LSTM
  • Kısıtlı Boltzmann makinesi
  • SOM
  • Kıvrımlı sinir ağları
Pekiştirmeli öğrenme
  • Q-Learning
  • SARSA
  • Temporal Difference (TD)
Teori
  • Bias-variance ikilemi
  • Hesaplamalı öğrenme teorisi
  • Empirik risk minimizasyonu
  • Occam learning
  • PAC learning
  • İstatistiki öğrenme teorisi
  • VC theory
Konferanslar ve dergiler
  • NIPS
  • ICML
  • ML
  • JMLR
  • ArXiv:cs.LG
  • g
  • t
  • d

Gözetimli öğrenme ya da denetimli öğrenme (İngilizce: supervised learning), bilinen etiketler ve özellikler kullanarak bir fonksiyon öğrendiğimiz, makine öğreniminin önemli bir alt dalıdır. Bu yöntem, eğitim veri seti kullanılarak öğrenilen modelin, yeni ve bilinmeyen veri noktalarını doğru bir şekilde tahmin etmesini amaçlar.[1][2]

Bilgisayar mühendisliğinin, makine öğrenmesi alanının bir konusu olan gözetimli öğrenme, verilen X {\displaystyle X} {\displaystyle X} girdi kümesinden istenen Y {\displaystyle Y} {\displaystyle Y} çıktı kümesinin elde edilmesi için bir fonksiyon öğrenilmesidir.[3]

Gözetimli öğrenmede, öğrenilmek istenen kavram ile ilgili toplanan gözlemler bir eğitim kümesi olarak öğreniciye verilir. Eğitim kümesinde her örnek için istenen çıktı değerleri de verilir. Bu bilgiler kullanılarak giriş ve çıkış arasında bir ilişki oluşturulur. Oluşturulan ilişki kullanılarak gelecekte karşılaşılacak X ′ {\displaystyle X'} {\displaystyle X'}gözlemlerinin karşılık geldiği Y ′ {\displaystyle Y'} {\displaystyle Y'}çıktıları tahmin edilebilir.

Tarihçe ve Gelişim

[değiştir | kaynağı değiştir]

Gözetimli öğrenme, 1950'lerde istatistiksel sınıflandırma ve regresyon analizinin gelişimi ile ortaya çıkmıştır. Alan, yapay sinir ağlarının ve destek vektör makinelerinin geliştirilmesi ile önemli ilerlemeler kaydetmiştir. 1990'larda büyük veri kümelerinin ve hesaplama gücünün artmasıyla, gözetimli öğrenme algoritmaları daha sofistike hale gelmiştir.[4][5]

Uygulama Alanları

[değiştir | kaynağı değiştir]

Gözetimli öğrenme, çeşitli alanlarda başarılı bir şekilde uygulanmaktadır:

Tıp: Hastalık teşhisi ve tedavi önerileri.

Finans: Kredi risk analizi ve piyasa tahminleri.

Pazarlama: Müşteri segmentasyonu ve hedefli pazarlama.

Görüntü İşleme: Nesne tanıma ve yüz tanıma.[6][7][8]

Avantaj ve Dezavantajlar

[değiştir | kaynağı değiştir]

Gözetimli öğrenme yöntemlerinin avantajları ve dezavantajları şunlardır:

Avantajlar:

Yüksek doğruluk: Etiketlenmiş veri setleri kullanarak yüksek doğrulukta modeller oluşturabilir.

Uygulama çeşitliliği: Birçok farklı problem türünde uygulanabilir.

Dezavantajlar:

Veri bağımlılığı: Etiketlenmiş veri gereksinimi yüksek ve maliyetlidir.

Aşırı öğrenme riski: Model, eğitim verisine aşırı uyum sağlayarak genelleme yeteneğini kaybedebilir.[9][10]

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Mitchell, T. (1997). Machine Learning. McGraw Hill. ISBN 0-07-042807-7.
  2. ^ Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Prentice Hall. ISBN 0-13-604259-7.
  3. ^ Bkz. Alpaydın, Ethem (2010). Introduction to Machine Learning. Londra: The MIT Press. s. 8. ISBN 978-0-262-01243-0. 2 Mart 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Temmuz 2016. 
  4. ^ McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. August 31, 1955.
  5. ^ Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer.
  6. ^ Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
  7. ^ Ng, A. Y., & Jordan, M. I. (2002). On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems, 14, 841-848.
  8. ^ Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 511-518.
  9. ^ Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
  10. ^ Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • LCCN: sh94008290
  • NLI: 987007561023305171
"https://tr.wikipedia.org/w/index.php?title=Gözetimli_öğrenme&oldid=34411242" sayfasından alınmıştır
Kategori:
  • Makine öğrenimi
Gizli kategoriler:
  • ISBN sihirli bağlantısını kullanan sayfalar
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 22.33, 27 Kasım 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Gözetimli öğrenme
Konu ekle