Black-Scholes denklemi
Black-Scholes denklemi, 1973 yılında Fischer Black ve Myron Scholes tarafından yazılan makalede[1] elde edilen Black-Scholes formülünün kanıtında ilk defa elde edilmiş ve daha genel türev ürünleri için de uyarlanabilen bir kısmi diferensiyel denklemdir. Black-Scholes formülünün orijinal kanıtındaki esas fikir, opsiyon ve opsiyon dayanak varlığından oluşan bir portföy yaratmak ve bu portföyü küçük zaman aralıklarında dayanak varlığın piyasa fiyatına duyarsız hale getirmektir. Sonucunda, Black-Scholes denklemi elde edilir ve elde edilen diferansiyel denklem, değişik dönüşümler ve yerine koymalar vasıtasıyla ısı denklemine dönüştürülür.
Denklemin ifadesi
[değiştir | kaynağı değiştir]Kullanma fiyatı K, vadesi T olan Avrupa tipi bir opsiyonun fiyatı , bu opsiyonun dayanak varlığının spot fiyatı S, oynaklığı (volatilitesi) ve risksiz-faiz oranı r olsun. Diyelim ki, dayanak varlığın spot fiyat süreci geometrik Brown hareketini izlesin; yani, Brown hareketini ile gösterirsek, sabitse
olsun. O zaman,
Kanıt
[değiştir | kaynağı değiştir]Black-Scholes modelinin merkezi varsayımlarından biri söz konusu dayanak varlığın (Black-Scholes özelinde hisse senedinin) fiyatının hareketlerinin (St) geometrik Brown hareketini izlemesidir. Yani, sabit bir sürüklenme () ve volatilite () olmak üzere
Black ve Scholes'un makalesindeki fikirden hareketle portföy () şu şekilde oluşsun:
- -1 tane opsiyon (yani opsiyon satılmıştır)
- sonradan belirlenmek üzere tane dayanak varlık.
Opsiyonun fiyatı olsun. O zaman, bu portföyün değeri
olur. Bu portföyün değerinin kısa bir zaman aralığındaki değişimi o zaman
olur. Öbür taraftan, fiyatı iki kere türevlenebilien bir türev ürününün fiyatı için Ito önsavı kullanılarak
elde edilir. O zaman,
olur. Bu portföyün dayanak varlığın piyasa fiyatına duyarsız halde olması istendiğinden, difüzyon teriminin (rassallığa katkıda bulunan terimlerin) 0 olması gerekir. Yani, olmalıdır ki bu da verir. O zaman,
elde edilir. Diğer taraftan, portföy rassallığa duyarsız hale geldiği için risksiz faiz oranı ile büyüyecektir; yani,
elde edilir. için elde edilen bu iki ifade birbirine eşitlenerek Black-Scholes kısmi diferansiyel denklemi elde edilir:
Bu denklemin çözülmesi için aynı zamanda bir sınır değeri konulması lazım;ancak, zaten opsiyonun vade tarihindeki değeri opsiyonun türüne göre veya olacaktır.
Ayrıca bakınız
[değiştir | kaynağı değiştir]Kaynakça
[değiştir | kaynağı değiştir]- ^ Black, Fischer; Scholes, Myron (1973). "The Pricing of Options and Corporate Liabilities". Journal of Political Economy. 81 (3): 637-654. doi:10.1086/260062. [1] 31 Mart 2024 tarihinde Wayback Machine sitesinde arşivlendi. (Black ve Scholes'un orijinal makalesi.)