Yükseklik (üçgen) - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Üçgende Yükseklik

Yükseklik (üçgen)

  • العربية
  • Беларуская
  • Беларуская (тарашкевіца)
  • Български
  • Bosanski
  • کوردی
  • Чӑвашла
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • فارسی
  • Français
  • Galego
  • हिन्दी
  • Magyar
  • Հայերեն
  • Bahasa Indonesia
  • 日本語
  • ភាសាខ្មែរ
  • Lietuvių
  • Latviešu
  • Македонски
  • Nederlands
  • Polski
  • Русский
  • Srpskohrvatski / српскохрватски
  • Slovenčina
  • Slovenščina
  • Српски / srpski
  • Ślůnski
  • தமிழ்
  • Українська
  • اردو
  • Tiếng Việt
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Geometri
Bir düzleme, bir kürenin yansıtılması
  • Ana hatları
  • Tarihi
Dalları
  • Öklidsel
  • Öklid dışı
    • Eliptik
      • Küresel
    • Hiperbolik
  • Tasarı
  • Sentetik
  • Analitik
  • Cebirsel
    • Aritmetik
    • Diyofant
  • Diferansiyel
    • Riemannian
    • Semplektik
    • Ayrık diferansiyel
  • Karmaşık
  • Sonlu
  • Ayrık/Kombinatoryal
    • Dijital
  • Konveks
  • Hesaplamalı
  • Fraktal
  • Kavramlar
  • Özellikler
Boyut
  • Pergel ve çizgilik çizimleri
  • Açı
  • Eğri
  • Köşegen
  • Ortogonallik (Dik)
  • Paralel
  • Köşenokta
  • Eşleşik
  • Benzerlik
  • Simetri
Sıfır boyutlu
  • Nokta
Bir boyutlu
  • Doğru
    • parçası
    • ışın
  • Uzunluk
İki boyutlu
  • Düzlem
  • Alan
  • Çokgen
Üçgen
  • Yükseklik
  • Hipotenüs
  • Pisagor teoremi
Paralelkenar
  • Kare
  • Dikdörtgen
  • Eşkenar dörtgen
  • Romboid
Dörtgen
  • Yamuk
  • Deltoid (geometri)
Çember
  • Çap
  • Çevre
  • Alan
Üç boyutlu
  • Hacim
  • Küp
    • Küboid
  • Silindir
  • Piramit
  • Küre
Dört ve üzeri boyutlu
  • Tesseract
  • Hiperküre
Geometriciler
İsme göre
  • Aida
  • Aryabhata
  • Ahmes
  • Apollonius
  • Arşimet
  • Atiyah
  • Baudhayana
  • Bolyai
  • Brahmagupta
  • Cartan
  • Coxeter
  • Descartes
  • Euler
  • Gauss
  • Gromov
  • Hayyám
  • Hilbert
  • İbn-i Heysem
  • el-İşbîlî
  • Jyeṣṭhadeva
  • Kātyāyana
  • Klein
  • Lobachevsky
  • Manava
  • Minkowski
  • Minggatu
  • Öklid
  • Pascal
  • Pisagor
  • Parameshvara
  • Poincaré
  • Riemann
  • Sakabe
  • Siczi
  • el-Tusi
  • Veblen
  • Virasena
  • Yang Hui
  • Zhang
  • Geometricilerin listesi
Döneme göre
Milattan önce
  • Ahmes
  • Baudhayana
  • Manava
  • Pisagor
  • Öklid
  • Arşimet
  • Apollonius
MS 1–1400'lar
  • Zhang
  • Kātyāyana
  • Aryabhata
  • Brahmagupta
  • Virasena
  • İbn-i Heysem
  • Siczi
  • Hayyám
  • el-İşbîlî
  • el-Tusi
  • Yang Hui
  • Parameshvara
1400'lar–1700'ler
  • Jyeṣṭhadeva
  • Descartes
  • Pascal
  • Minggatu
  • Euler
  • Sakabe
  • Aida
1700'ler–1900'lar
  • Gauss
  • Lobachevsky
  • Bolyai
  • Riemann
  • Klein
  • Poincaré
  • Hilbert
  • Minkowski
  • Cartan
  • Veblen
  • Coxeter
Günümüz
  • Atiyah
  • Gromov
  • g
  • t
  • d
"h" yüksekliktir.

Yükseklik cisimlerin referans alınan tabanından cismin tabana dik en uzak noktasıdır. Aynı zamanda yükseklik göreceli bir terimdir çünkü iki ve üç boyutlu cisimlerde değişebilmektedir. Bir örnek verecek olursak Bir kare piramidin yüksekliği tabanının(kare) merkezinden piramitin tepe noktasına çıkan bir doğru parçasıdır. Ancak yan yüzlerinin birindeki(üçgen) tabanından-ki bu taban iki boyutlu değildir bir boyutludur- tepesine bir dikme de yan yüz yüksekliği olarak tanımlanır.

Üçgende Yükseklik

[değiştir | kaynağı değiştir]

Üçgende yüksekliği ele aldığımızda diğer cisimlerdeki sonuca ulaşırız. Bir taban ve tepeden tabana indirilen bir dikme. Taban iki boyutlu bir cisim olan doğru parçasıdır yükseklikse bir noktadır. Ancak her zaman tabandan tepeye bir dikme bulunmaz. Yüksekliğin dik olması gerekir ancak tabanla tepe dik olacak bir konumda bulunmazlar işte o zaman tepe ya da taban bir işaret çizgisiyle kaydırılır ve tabanla tepe dik bir konum alacak hale gelir. Bu durum daha çok çeşitkenar üçgenlerde görülmektedir. Üçgenlerde yükseklik birçok alan hesaplamasında kullanılmaktadır.Burada tabanla tepe dik bir konumda karşılaşamadıklarından işaret çizgileriyle taban kaydırılıp (kesik çizgiler) yükseklik oluşturulmuş.

Taslak simgesiGeometri ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
"https://tr.wikipedia.org/w/index.php?title=Yükseklik_(üçgen)&oldid=35144031" sayfasından alınmıştır
Kategoriler:
  • Geometri taslakları
  • Üçgen geometrisi
Gizli kategori:
  • Tüm taslak maddeler
  • Sayfa en son 10.13, 24 Mart 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Yükseklik (üçgen)
Konu ekle