Tanım kümesi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kesin tanım
  • 2 Ayrıca bakınız
  • 3 Kaynakça

Tanım kümesi

  • العربية
  • Azərbaycanca
  • Български
  • বাংলা
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Cymraeg
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Føroyskt
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Hrvatski
  • Հայերեն
  • İnterlingua
  • Bahasa Indonesia
  • Ido
  • Íslenska
  • İtaliano
  • 日本語
  • 한국어
  • Lombard
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • Slovenčina
  • Shqip
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Tagalog
  • Toki pona
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Matematikte verilmiş bir fonksiyonun tanım kümesi, fonksiyonun tanımlı olduğu "girdi" değerlerinin oluşturduğu kümedir.[1] Örneğin, kosinüsün tanım kümesi gerçel sayılar olurken karekök fonksiyonunun tanım kümesi (karmaşık sayılar önemsenmezse) 0 ve 0'dan büyük sayıların oluşturduğu negatif olmayan gerçel sayılar kümesidir. Fonksiyonun xy Kartezyen koordinat sistemindeki temsilinde, tanım kümesi x-ekseni (apsis) ile temsil edilir.

f(x) = √x 'in tanım kümesi 0 (dahil) ile artı sonsuz (dahil değil) arasındaki tüm sayılardır.

Kesin tanım

[değiştir | kaynağı değiştir]

Bir f:X→Y fonksiyonu verilmiş olsun. Girdi değerlerinin oluşturduğu X kümesi f 'nin tanım kümesi iken; Y kümesi ise f 'nin değer kümesidir.

f 'nin görüntü kümesi ise f 'nin bütün çıktı değerlerinin kümesidir; yani { f ( x ) : x ∈ X } {\displaystyle \{f(x):x\in X\}} {\displaystyle \{f(x):x\in X\}} kümesidir.[2] f nin görüntü kümesi değer kümesi ile aynı küme olabilir veya değer kümesinin bir altkümesi olabilir. f örten fonksiyon olmadıkça genelde değer kümesinden daha küçük bir kümedir.

İyi tanımlı bir fonksiyon tanım kümesindeki her elemanı değer kümesindeki bir elemana göndermelidir. Mesela,

f(x) = 1/x

biçiminde tanımlanan fonksiyonun f(0) için bir değeri yoktur. Bu sebeple, gerçel sayılar kümesi R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} }, bu fonksiyonun tamın kümesi olamaz. Bu gibi durumlarda, fonksiyon ya R ∖ { 0 } {\displaystyle \mathbb {R} \backslash \{0\}} {\displaystyle \mathbb {R} \backslash \{0\}} üzerinde tanımlanır ya da f(0) açık bir şekilde tanımlanarak "açık yamanır". Eğer f fonksiyonu

f(x) = 1/x, x ≠ 0
f(0) = 0,

şeklinde genişletilip tanımlanırsa, o zaman f tüm gerçel değerler için tanımlı olur ve tanım kümesi de R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} } olur.

Herhangi bir fonksiyon kendi tanım kümesinin bir altkümesine sınırlandırılabilir. S ⊆ A ise, g : A → B 'nin S 'ye sınırlandırılması g |S : S → B şeklinde yazılır.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Görüntü kümesi
  • Değer kümesi
  • Örten fonksiyon
  • Birebir fonksiyon
  • Birebir örten fonksiyon

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Paley, H. Abstract Algebra, Holt, Rinehart and Winston, 1966 (s. 16).
  2. ^ Smith, William K. Inverse Functions, MacMillan, 1966 (s. 8).
"https://tr.wikipedia.org/w/index.php?title=Tanım_kümesi&oldid=33492555" sayfasından alınmıştır
Kategori:
  • Fonksiyonlar
  • Sayfa en son 15.07, 13 Temmuz 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Tanım kümesi
Konu ekle