p-sel sayı - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Ayrıca bakınız
  • 2 Başvurular ve kaynaklar

p-sel sayı

  • العربية
  • Беларуская
  • Български
  • Català
  • Čeština
  • Deutsch
  • English
  • Español
  • فارسی
  • Français
  • Galego
  • עברית
  • Magyar
  • İtaliano
  • 日本語
  • 한국어
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Русский
  • Simple English
  • Svenska
  • Українська
  • Tiếng Việt
  • 中文
  • 文言
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

p-sel sayılar, rasyonel sayıların p-sel norma göre genişletilmesiyle elde edilirler, p-sel sayılar cismi geleneksel olarak Q p {\displaystyle \mathbb {Q} _{p}} {\displaystyle \mathbb {Q} _{p}} simgesiyle gösterilir. Her p-sel sayı, p bir asal sayı ve k bir tam sayı olmak üzere z ∈ Q p {\displaystyle z\in \mathbb {Q} _{p}} {\displaystyle z\in \mathbb {Q} _{p}} için;

z = ± ∑ i = k ∞ a i ⋅ p i {\displaystyle z=\pm \sum _{i=k}^{\infty }a_{i}\cdot p^{i}} {\displaystyle z=\pm \sum _{i=k}^{\infty }a_{i}\cdot p^{i}}

şeklinde, a i {\displaystyle a_{i}} {\displaystyle a_{i}} katsayılarının 0 ile p-1 arasında değer aldığı bir açılıma sahiptir. Eğer bu açılımda sıfırdan farklı ilk a i {\displaystyle a_{i}} {\displaystyle a_{i}} katsayısı i ≥ 0 {\displaystyle i\geq 0} {\displaystyle i\geq 0} için gözleniyorsa, z sayısına p-sel tam sayı denir. p-sel tam sayılar halkası ise Z p {\displaystyle \mathbb {Z} _{p}} {\displaystyle \mathbb {Z} _{p}}işaretiyle gösterilir.

p-sel sayılar Alman matematikçi Hensel tarafından kurgulanmış ve Hasse, Tate gibi matematikçiler tarafından geliştirilmiştir. En önemli uygulamaları sayılar kuramı alanındadır.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • p-sel norm

Başvurular ve kaynaklar

[değiştir | kaynağı değiştir]
  • Matematik Dünyası Dergisi, 2004-III (Güz) sayısı kapak konusu, sayfa 9-46.
  • Fernando Q. Gouvêa (1991), p-adic Numbers, An Introduction (2. bas.), Springer, ISBN 9783642590580 
Taslak simgesiMatematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
  • g
  • t
  • d
Sayılar
Sayılabilir küme
  • Doğal sayılar ( N {\displaystyle \scriptstyle \mathbb {N} } {\displaystyle \scriptstyle \mathbb {N} })
  • Tam sayı ( Z {\displaystyle \scriptstyle \mathbb {Z} } {\displaystyle \scriptstyle \mathbb {Z} })
  • Rasyonel sayılar ( Q {\displaystyle \scriptstyle \mathbb {Q} } {\displaystyle \scriptstyle \mathbb {Q} })
  • Çizilebilir sayılar
  • Cebirsel sayılar ( A {\displaystyle \scriptstyle \mathbb {A} } {\displaystyle \scriptstyle \mathbb {A} })
  • Periyotlar
  • Hesaplanabilir sayılar
  • Tanımlanabilir gerçel sayılar
  • Aritmetik sayılar
  • Gaussyen tam sayılar
Kompozisyon cebiri
  • Bölüm cebiri: Reel sayılar ( R {\displaystyle \scriptstyle \mathbb {R} } {\displaystyle \scriptstyle \mathbb {R} })
  • Karmaşık sayılar ( C {\displaystyle \scriptstyle \mathbb {C} } {\displaystyle \scriptstyle \mathbb {C} })
  • Dördey ( H {\displaystyle \scriptstyle \mathbb {H} } {\displaystyle \scriptstyle \mathbb {H} })
  • Sekizeyler ( O {\displaystyle \scriptstyle \mathbb {O} } {\displaystyle \scriptstyle \mathbb {O} })
Split türleri
  • R {\displaystyle \scriptstyle \mathbb {R} } {\displaystyle \scriptstyle \mathbb {R} } üzerinde:  • Split-karmaşık sayılar  • Split-dördeyler

C {\displaystyle \scriptstyle \mathbb {C} } {\displaystyle \scriptstyle \mathbb {C} } üzerinde:  • Split-sekizeyler  • Bikompleksler  • Bidördeyler  • Bisekizeyler

Diğer hiperkarmaşık sayılar
  • İkil sayılar
  • İkil dördeyler
  • İkil-karmaşık sayılar
  • Hiperbolik dördeyler
  • Onaltıyeyler ( S {\displaystyle \scriptstyle \mathbb {S} } {\displaystyle \scriptstyle \mathbb {S} })
  • Split-bidördeyler
  • Çoklukarmaşık sayılar
  • Geometrik cebir
    • Fiziksel uzay cebri
    • Uzay-zaman cebri
Diğer türler
  • Kardinal sayılar
  • Genişletilmiş gerçek sayılar
  • İrrasyonel sayılar
  • Bulanık sayılar
  • Hiper gerçek sayılar
  • Levi-Civita cismi
  • Surreal sayılar
  • Aşkın sayılar
  • Ordinal sayılar
  • p-sel sayılar (p-sel solenoidler)
  • Süperdoğal sayılar
  • Süper gerçek sayılar
İlgili diğer kavramlar
  • Çift ve tek sayılar
  • Devirli sayılar
  • Hiperbolik sayılar
  • Sonluötesi sayılar
  • Cayley–Dickson yapısı
  • Tessarine
  • Musean hipersayısı
  • ∞ (sonsuz)
  • Tam sayı dizileri
  • Büyük sayılar (Googol)
  • Matematik sabitleri
  • Nominal sayılar
  • Asal sayılar
  • Bileşik sayılar
  • Sanal sayılar
  • Arkadaş sayılar
  • Mükemmel sayılar
  • Eksik sayılar
  • Artık sayılar
  • Üçgensel sayılar
  • Karesel sayılar
  • Kare-üçgensel sayılar
  • Beşgensel sayılar
  • Dörtyüzlüsel sayılar
  • Harshad sayıları
  • Yarım tam sayılar
  • Palindromik sayılar
  • Lasa sayısı
  • Sınıflandırma
  • Liste Liste
  • g
  • t
  • d
Sayılar teorisi
Alanlar
  • Cebirsel sayı teorisi
  • Analitik sayı teorisi
  • Geometrik sayı teorisi
  • Hesaplamalı sayı teorisi
  • Transandantal sayı teorisi
  • Diophantine geometrisi
  • Aritmetik kombinatorikler
  • Aritmetik geometri
  • Aritmetik topoloji
  • Aritmetik dinamikler
Anahtar kavramlar
  • Sayılar
  • Doğal sayılar
  • Asal sayılar
  • Rasyonel sayılar
  • İrrasyonel sayılar
  • Cebirsel sayılar
  • Transandantal sayılar
  • p-sel sayılar
  • Aritmetik
  • Modüler aritmetik
  • Çin kalan teoremi
  • Aritmetik fonksiyonlar
Gelişmiş kavramlar
  • İkinci derece (Kuadratik) biçimler
  • Modüler biçimler
  • L-fonskiyonları
  • Diophantine denklemleri
  • Diophantine yaklaştırımı
  • Sürekli kesirler
  • Kategori Kategori
  • Liste Konuların listesi
  • Liste Rekreasyonel konuların listesi
  • Vikikitap sayfası Wikibook (en)
  • Vikiversite sayfası Wikversity (en)
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb12266608w (data)
  • GND: 4044292-5
  • LCCN: sh85096402
  • NLI: 987007555720905171
"https://tr.wikipedia.org/w/index.php?title=P-sel_sayı&oldid=36059192" sayfasından alınmıştır
Kategoriler:
  • Matematik taslakları
  • Sayılar teorisi
Gizli kategoriler:
  • Tüm taslak maddeler
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 21.17, 23 Eylül 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
p-sel sayı
Konu ekle