Moment (matematik) - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Momentlerin önemi
    • 1.1 Varyans
      • 1.1.1 Normalize edilmiş momentler
    • 1.2 Çarpıklık
    • 1.3 Basıklık
  • 2 Kümülantlar
  • 3 Örneklem momentleri
  • 4 Ayrıca bakınız
  • 5 Dış bağlantılar

Moment (matematik)

  • العربية
  • Беларуская
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • עברית
  • Magyar
  • İtaliano
  • 日本語
  • ಕನ್ನಡ
  • 한국어
  • Македонски
  • Nederlands
  • Polski
  • Português
  • Русский
  • Slovenčina
  • Slovenščina
  • Sunda
  • Svenska
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Momentler sayfasından yönlendirildi)

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

μ n ′ = ∫ − ∞ ∞ ( x − c ) n f ( x ) d x . {\displaystyle \mu '_{n}=\int _{-\infty }^{\infty }(x-c)^{n}\,f(x)\,dx.} {\displaystyle \mu '_{n}=\int _{-\infty }^{\infty }(x-c)^{n}\,f(x)\,dx.}

Sıfır değeri etrafında olan momentler en basit olarak bir fonksiyonun momenti diye anılır.

Olasılık kuramı ve istatistik bilim dalları için momentlerin ilgili olduğu fonksiyonlar bir rassal değişken için olasılık yoğunluk fonksiyonu ile ilgilidir. Bir olasılık yoğunluk fonksiyonun sıfır etrafındaki ninci momenti Xnin matematiksel beklentidir. Ortalama μ etrafındaki momentler merkezsel momentler olarak adlandırılır; bunlar bir fonksiyonun şeklini betimlerler.

Eğer f bir olasılık yoğunluk fonksiyonu ise, o halde yukarıda verilmiş olan entegralin değeri olasılık dağılımınin ninci moment Riemann-Stieltjes entegrali tarafından şöyle verilir:

μ n ′ = E ⁡ ( X n ) = ∫ − ∞ ∞ x n d F ( x ) {\displaystyle \mu '_{n}=\operatorname {E} (X^{n})=\int _{-\infty }^{\infty }x^{n}\,dF(x)\,} {\displaystyle \mu '_{n}=\operatorname {E} (X^{n})=\int _{-\infty }^{\infty }x^{n}\,dF(x)\,}

Burada X bu dağılımı gösteren bir rassal değişken ve E bir beklenti operatörüdür.

Eğer

E ⁡ ( | X n | ) = ∫ − ∞ ∞ | x n | d F ( x ) = ∞ , {\displaystyle \operatorname {E} (|X^{n}|)=\int _{-\infty }^{\infty }|x^{n}|\,dF(x)=\infty ,\,} {\displaystyle \operatorname {E} (|X^{n}|)=\int _{-\infty }^{\infty }|x^{n}|\,dF(x)=\infty ,\,}

ise momentin mevcut olmadığı kabul edilir. Eğer herhangi bir nokta etrafında ninci moment belirlenebilirse, o halde (n - 1)inci moment de bulunur ve her bir nokta etrafında daha-alt derecelerdeki momentler de bulunur.

Momentlerin önemi

[değiştir | kaynağı değiştir]

Sıfır etrafindaki birinci moment, eğer anlamlı ise, Xin matematiksel beklentisi yani μ olarak yazılan Xin olasılık dağılımının ortalamasıdır. Daha yüksek dereceler için merkezsel momentler sıfır etrafında momentlerden daha ilgi çekicidir.

Bir rassal değişken olan Xin olasılık dağılımının ninci merkezsel momenti şudur:

μ n = E ( ( X − μ ) n ) . {\displaystyle \mu _{n}=E((X-\mu )^{n}).\,} {\displaystyle \mu _{n}=E((X-\mu )^{n}).\,}

Böylece birinci merkezsel moment 0 olur.

Varyans

[değiştir | kaynağı değiştir]

İkinci merkezsel moment varyans σ2 olur; bunun pozitif kare kökü standart sapma σ olur.

Normalize edilmiş momentler

[değiştir | kaynağı değiştir]

Normalize edilmiş ninci merkezsel moment veya standardize edilmis moment ninci merkezsel moment bolu σn olur; yani t = (x - μ)/σ ifadesinin ninci momentidir. Bu normalize edilmiş momentler boyutsuz niceliklerdir ve herhangi bir dogrusal ıskala değişiminden etkilenmeden bir dağılımı temsil edebilirler.

Çarpıklık

[değiştir | kaynağı değiştir]

Üçüncü merkezsel moment bir dağılımın simetrik olmaması ölçüsüdür. Herhangi bir simetrik dağılım için üçüncü merkezsel moment, eğer tanımlanabilirse, 0 olur. Normalize edilmiş üçüncü merkezsel moment γ ile yazılıp çarpıklık adı ile anılır. Sol tarafa çarpıklık gösteren (yani sol kuyruğu daha ağır basan) bir dağılım negatif çarpıklık gösterir. Sağ tarafa çarpıklık gösteren (yani sağ kuyruğu daha ağır basan) bir dağılım pozitif çarpıklık gösterir.

Normal dağılımdan çok fazla farklı olmayan dağılımlar için medyan μ - γσ/6 değerine yaklaşık olur ve mod ise μ - γσ/2 ifadesine yaklaşıktır.

Basıklık

[değiştir | kaynağı değiştir]

Dördüncü merkezsel moment dağılımın ince ve sivri mi yoksa kalın ve basık mı olduğunun ölçüsüdür ve bu niteliği ayırt etmek için aynı varyansı gösteren bir normal dağılım ile karşılaştırma yapılır. Dördüncü merkezsel moment, bir dörtlü üstelin matematiksel beklentisi olduğu için, eğer tanımı yapılabilirse, (sadece dejenere nokta dağılım hariç) her zaman pozitif değer alır. Bir normal dağılım için dördüncü merkezsel moment 3σ4 olur.

Basıklık ölçüsü olarak kullanılan basıklık fazlalığı katsayısı κ, normalize edilmiş dördüncü merkezsel moment eksi 3 olarak tanımlanır. (Gelecek kısımda gösterildiği gibi, bu ölçü dördüncü kümülant bölü varyans kare olarak da tanımlanır.) Bazı otoriteler bu şekilde normal dağılımı koordinatların orijinine koymak için kullanılan eksi 3 terimini tenkit etmektedirler. Eğer bir dağılım ortalama değerinde bir doruk ve iki tarafında uzun kuyruklar gösterirse, dördüncü moment değeri büyük olur ve basıklık ölçüsü κ pozitiftir; aksi halde dördüncü moment değeri küçük ve basıklık ölçüsü κ negatif olur. Böylece sınırlanmış dağılımlarda basıklık düşüktür.

Basıklık ölçüsü hiç sınırsız bir şekilde pozitif olması mümkündür ve κ değeri mutlaka γ2 - 2; değerine eşit veya bu değerden büyük olmalıdır. κ değeri ile γ2 - 2; değeri eşitliği ise ancak ve ancak Bernoulli dağılımı için doğrudur. Normal dağılımdan çok farklı şekil göstermeyen sınırsız çarpıklık gösteren dağılımlar için κ değeri γ2 ile 2γ2 arasında bulunur.

Bu eşitsizlik terimin ispat etmek için önce şu terimi ele alalım:

E ⁡ ( ( T 2 − a T ) 2 ) {\displaystyle \operatorname {E} ((T^{2}-aT)^{2})\,} {\displaystyle \operatorname {E} ((T^{2}-aT)^{2})\,}

Bunda T = (X - μ)/σ olur. Bu bir karenin matematiksel bekleyişidir. a değeri ne olursa olsun bu non-negatiftir ve ayni zamanda a ifadesinde bir kuadratik denklem olur. Bu da ispati istenilen ifadedir.

Kümülantlar

[değiştir | kaynağı değiştir]

Birinci moment ve ikinci ve üçüncü normalize edilmemiş merkezsel momentler doğrusaldırlar; yani eğer X ve Y istatistiksel olarak bağımsız rassal değişkenlerse, o halde

μ 1 ( X + Y ) = μ 1 ( X ) + μ 1 ( Y ) {\displaystyle \mu _{1}(X+Y)=\mu _{1}(X)+\mu _{1}(Y)\,} {\displaystyle \mu _{1}(X+Y)=\mu _{1}(X)+\mu _{1}(Y)\,}

ve

var ⁡ ( X + Y ) = var ⁡ ( X ) + var ⁡ ( Y ) {\displaystyle \operatorname {var} (X+Y)=\operatorname {var} (X)+\operatorname {var} (Y)} {\displaystyle \operatorname {var} (X+Y)=\operatorname {var} (X)+\operatorname {var} (Y)}

ve

μ 3 ( X + Y ) = μ 3 ( X ) + μ 3 ( Y ) . {\displaystyle \mu _{3}(X+Y)=\mu _{3}(X)+\mu _{3}(Y).\,} {\displaystyle \mu _{3}(X+Y)=\mu _{3}(X)+\mu _{3}(Y).\,}

eşitlikleri gerçektir. (Bu şartlar yalnız bağımsızlık şartına değil daha zayıf şartlar altında bulunan değişkenler için de gerçek olabilir.) Birinci şart her zaman doğru olup ikinci şart da doğru olursa bu değişkenler arasında korelasyon yoktur.

Bunun doğruluğunu anlamak için bu momentlerin ilk üç kümülant olduklarını ve dördüncü kümülantin ise basıklık katsayısı κ çarpı σ4 olduğunu anlamak yeterlidir.

Bütün kümülantlar momentlerin polinomlarıdır yani faktoriyel momentlerdir. Merkezsel momentler sıfır etrafındaki momentlerin polinomlarıdır ve bunun aksi de doğrudur.

Örneklem momentleri

[değiştir | kaynağı değiştir]

Bir anakütle için momentler bir örneklem k-inci momenti kullanılarak kestirimi yapılabilirler. Örneklem k-inci momenti şöyle ifade edilir:

1 n ∑ i = 1 n X i k {\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}X_{i}^{k}\,\!} {\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}X_{i}^{k}\,\!}

ve bu anakütleden rassal örneklem ile seçilmiş X1,X2,..., Xn örneklem değerlerine uygulanır.

Bu bir yansız kestirimdir. Çünkü herhangi bir n büyüklükte bir örneklem için örneklem momentinin matematiksel beklenen değerinin anakütle k-inci momentine eşit olduğu hemen gösterilebilir.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Binom dağılım
  • Kümülant
  • Momentler yöntemi
  • Ortalama etrafinda moment
  • Moment üreten fonksiyon
  • Normal dağılım
  • Standardize edilmiş moment

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • [1]15 Mart 2006 tarihinde Wayback Machine sitesinde arşivlendi. Mathworld websitesi.
  • g
  • t
  • d
Olasılık dağılımlar kuramı
Olasılık kütle fonksiyonu · Olasılık yoğunluk fonksiyonu · Birikimli dağılım fonksiyonu · Kuantil fonksiyonu
Moment (matematik) · Merkezsel moment · Beklenen değer · Varyans · Standart sapma · Çarpıklık · Basıklık
Moment üreten fonksiyon · Karakteristik fonksiyon · Olasılık üreten fonksiyon · Kümülant
  • g
  • t
  • d
İstatistik
Betimsel istatistik
Sürekli veriler
Merkezî konum
Ortalama (Aritmetik, Geometrik, Harmonik) • Medyan • Mod
Yayılma
Açıklık • Standart sapma • Varyasyon katsayısı • Çeyrekler açıklığı • Kesirlilikler (kantil) (Dörttebirlik, Ondabirlik, Yüzdebirlik)
Dağılım şekli
Varyans • Çarpıklık • Basıklık • Moment (matematik)
İstatistiksel tablolar
Sıklık dağılımı • Çoklu sayılı özetleme tabloları • İlişki tablosu • Çoklu-yönlü sınıflandırma tabloları
İstatistiksel grafikler
Dairesel grafik • Çubuk grafiği • Kutu grafiği • Dal-yaprak grafikleri • Kontrol diyagramı • Histogram • Sıklık çizelgesi • Q-Q grafiği • Serpilme diyagramı
Veri toplama
Örnek tasarımı
Anakütle • Basit rassal örnekleme Örüntülü örnekleme • Tabakalı örnekleme • Küme örneklemesi • Çok aşamalı örnekleme
Deneysel tasarım
Anakütle • İstatistiksel deneysel tasarım tipleri • Deneysel hata • Yineleme • Bloklama • Duyarlılık ve belirleme
Örneklem kavramları
Örneklem büyüklüğü • Sınama gücü • Etki büyüklüğü • Örnekleme dağılımı • Standart hata
Çıkarımsal istatistik
ve
İstatistiksel kestirim ve testler
Çıkarımsal analiz tipleri
Kestirim • Parametrik çıkarımsal analiz • Parametrik olmayan çıkarımsal analiz • Bayesci çıkarımsal analiz • Meta-analiz
Çıkarımsal kestirim
Genel kestirim kavramları
Momentler yöntemi • Enbüyük olabilirlik • Enbüyük artçıl • Bayes-tipi kestirimci • Minimum uzaklık • Maksimum aralık verme
Tekdeğişkenli kestirim
Kestirim • Güven aralığı • İnanılır aralık
Hipotez testi
İstatistiksel test ana kavramları
Sıfır hipotez • I.Tür ve II.Tür hata • Anlamlılık seviyesi • p-değeri
Basit tek-değişkenli ve iki-değişkenli
parametrik hipotez testi
μ için testi •

π için test • μ1-μ2 için test • π1-π2 için test •

σ1/σ2 için test
Tek-değişkenli ve iki-değişkenli
parametrik olmayan test analizi
Medyan testi • Ki-kare testi • Pearson ki-kare testi • Phi katsayısı • Wald testi • Mann-Whitney U testi • Wilcoxon'in işaretli sıralama testi
Korelasyon
ve
Regresyon analizi
Korelasyon
Pearson çarpım-moment korelasyonu • Sıralama korelasyonu ( Spearman'in rho • Kendall'in tau)
Doğrusal regresyon
Regresyon analizi  • Doğrusal model • Genel doğrusal model • Genelleştirilmiş doğrusal model
Doğrusal olmayan regresyon
Parametrik olmayan • Yarıparametrik • Logistik
Varyans analizi
Tek-yönlü varyans analizi • Kovaryans analizi • Bloklu tek-yönlü varyans analizi • Etki karışımı değişkeni
Çokdeğişkenli istatistik
Çokdeğişkenli regresyon • temel bileşenler · Faktör analizi • Kanonik korelesyon • Uygunluk analizi • Kümeleme analizi
Zaman serileri analizi
Yapısal model tanımlanması
Zaman serisi yapisal model ögeleri • Zaman serisi ögeleri saptanması • Zaman grafiği • Korrelogram
Zaman serileri kestirim teknik ve modelleri
Dekompozisyon • Trend uygulama kestirimi • Üssel düzgünleştirme • ARIMA modelleri • Box–Jenkins • Spektral yoğunluk kestirimi
Kestirim değerlendirmesi
Zaman seri kestirim değerlendirmesi
Sağkalım analizi
Sağkalım fonksiyonu • Kaplan–Meier • Log-sıra testi • Başarısızlık oranı • orantılı tehlikeler modeli
Kategori • Outline • Endeks
"https://tr.wikipedia.org/w/index.php?title=Moment_(matematik)&oldid=35970596" sayfasından alınmıştır
Kategoriler:
  • Olasılık dağılımlar teorisi
  • Analiz (matematik)
Gizli kategori:
  • Webarşiv şablonu wayback bağlantıları
  • Sayfa en son 16.57, 3 Eylül 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Moment (matematik)
Konu ekle