Kaldırılabilir tekillik - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Riemann teoremi
  • 2 Tekilliklerin diğer çeşitleri
  • 3 Ayrıca bakınız

Kaldırılabilir tekillik

  • Català
  • Deutsch
  • English
  • Español
  • فارسی
  • עברית
  • Magyar
  • 日本語
  • 한국어
  • Nederlands
  • Português
  • Română
  • Русский
  • Slovenščina
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Karmaşık analizde, bir kaldırılabilir tekillik veya daha düzgün bir söylemle, bir holomorf fonksiyonun kaldırılabilir tekilliği, fonksiyonun görünüşte holomorf olmadığı; ancak daha yakın bir incelemeden sonra fonksiyonun tanım kümesinin bu tekilliği de içerecek şekilde genişletilebileceği (fonksiyonun holomorf kalacağı şekilde) bir noktadır.

Mesela, z ≠ 0 için

f ( z ) = sin ⁡ z z {\displaystyle f(z)={\frac {\sin z}{z}}} {\displaystyle f(z)={\frac {\sin z}{z}}}

fonksiyonunun z = 0 'da tekilliği vardır. Bu tekillik, f(0) = 1 tanımlanarak kaldırılabilir. Sonuçtaki fonksiyon bir sürekli (holomorf) fonksiyondur.

Formel olarak, eğer U, karmaşık düzlem C 'nin açık bir kümesi, a, U 'nun bir noktası ve f : U - {a} → C holomorf ise; holomorf bir g : U → C fonksiyonu f 'ye U - {a} üzerinde eşitse, o zaman a 'ya f nin kaldırılabilir tekilliği adı verilir. Böyle bir g varsa, "f, a üzerine holomorf bir şekilde genişletilebilir" denir.

Riemann teoremi

[değiştir | kaynağı değiştir]

Kaldırılabilir tekillikler üzerine Riemann teoremi bir tekilliğin ne zaman kaldırılabileceğini ifade eder.

Teorem. Aşağıdaki ifadeler birbirine denktir:

i) f, a üzerine holomorf bir şekilde genişletilebilir.
ii) f, a üzerine sürekli bir şekilde genişletilebilir.
iii) Üzerinde f'nin sınırlı olduğu, a 'nın bir komşuluğu vardır.
iv) limz → a(z - a ) f(z) = 0.

i) ⇒ ii) ⇒ iii) ⇒ iv) çıkarımları barizdir. iv) ⇒ i) 'i kanıtlamak için, hatırlamamız gereken bir fonksiyonun a noktasında holomorf olmasının a noktasında analitik olmasına denk olduğudur; yani bir kuvvet serisi temsiline sahip olmasıdır.

h ( z ) = { ( z − a ) 2 f ( z ) z ≠ a , 0 z = a . {\displaystyle h(z)={\begin{cases}(z-a)^{2}f(z)&z\neq a,\\0&z=a.\\\end{cases}}} {\displaystyle h(z)={\begin{cases}(z-a)^{2}f(z)&z\neq a,\\0&z=a.\\\end{cases}}}

tanımını yapalım. O zaman,

h ( z ) − h ( a ) = ( z − a ) ( z − a ) f ( z ) , {\displaystyle h(z)-h(a)=(z-a)(z-a)f(z),\,} {\displaystyle h(z)-h(a)=(z-a)(z-a)f(z),\,}

olur. Burada, varsayımla (z - a)f(z) fonksiyonu D üzerinde sürekli bir fonksiyon olarak görülebilir. Başka bir deyişle, h, D üzerinde holomorftur ve a etrafında Taylor serisine sahiptir:

h ( z ) = a 2 ( z − a ) 2 + a 3 ( z − a ) 3 + ⋯ . {\displaystyle h(z)=a_{2}(z-a)^{2}+a_{3}(z-a)^{3}+\cdots .} {\displaystyle h(z)=a_{2}(z-a)^{2}+a_{3}(z-a)^{3}+\cdots .}

Bu yüzden,

g ( z ) = h ( z ) ( z − a ) 2 {\displaystyle g(z)={\frac {h(z)}{(z-a)^{2}}}} {\displaystyle g(z)={\frac {h(z)}{(z-a)^{2}}}}

f 'nin a üzerine holomorf genişlemesidir. Bu da iddiayı kanıtlar.

Tekilliklerin diğer çeşitleri

[değiştir | kaynağı değiştir]

Gerçel değişkenli fonksiyonların aksine, holomorf fonksiyonlar korunmalı tekillikleri tamamen sınıflandırılabildiği için yeteri kadar katıdır. Holomorf bir fonksiyonun tekilliği ya aslında tekillik değildir; yani kaldırılabilir tekilliktir ya da aşağıdaki iki çeşitten biridir:

  1. Riemann teoreminin ışığında, kaldırılabilir olmayan bir tekillik verildiğinde, limz → a(z - a )m+1f(z) = 0 yapacak bir m doğal sayısının varlığı sorgulanabilir. Böyleyse, a 'ya f 'nin bir kutbu denir ve böyle en küçük bir m 'ye a 'nın mertebesi denir. Böylece, kaldırılabilir tekillikler kesinlikle mertebesi 0 olan kutuplardır. Holomorf bir fonksiyon kutuplarının yakınında düzgün bir şekilde patlama yapar.
  1. f 'nin a noktasındaki korunmalı bir tekilliği kaldırılabilir veya kutup değilse, o zaman bu nokta esaslı tekilliktir. Her açık delikli U - {a} kümesini, f 'nin karmaşık düzlemin açık ve yoğun bir altkümesine gönderdiği de gösterilebilir.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Analitik kapasite
  • Kaldırılabilir süreksizlik
"https://tr.wikipedia.org/w/index.php?title=Kaldırılabilir_tekillik&oldid=32542173" sayfasından alınmıştır
Kategoriler:
  • Karmaşık analiz
  • Analitik fonksiyonlar
  • Meromorf fonksiyonlar
  • Bernhard Riemann
Gizli kategori:
  • Kanıt içeren maddeler
  • Sayfa en son 16.30, 21 Nisan 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Kaldırılabilir tekillik
Konu ekle