Ernst denklemi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Adı
  • 2 Ernst denklemi
    • 2.1 Kullanım amacı
  • 3 Bibliyografya
    • 3.1 İlgili yayınlar
      • 3.1.1 Journal of Mathematical Physics [en] mecmuasında
  • 4 Kaynakça

Ernst denklemi

  • العربية
  • English
  • Español
  • 日本語
  • 한국어
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Ernst denklemi, matematik'te doğrusal-olmayan bir kısmi diferansiyel denklem'dir.

Adı

[değiştir | kaynağı değiştir]

Ünlü fizikçi Frederick J. Ernst[1] tarafından bulunmuş olduğundan, "Ernst denklemi" olarak adlandırılmıştır.

Ernst denklemi

[değiştir | kaynağı değiştir]

Sağ tarafında Birinci dereceden kısmî türevler içeren ve doğrusal olmayan terimleri olan bir denklemdir. Çözümü aranan u karmaşık fonksiyonunun gerçel kısmı R(u), denklemin sol tarafındaki İkinci dereceden kısmî türevlerin çarpımı halinde belirdiğinden, denklemin her iki tarafı da doğrusal-olmayan (non-linear) terimler ihtivâ etmektedir. Denklem aşağıdaki şekilde verilmektedir:[2]

ℜ ( u ) ( u r r + u r / r + u z z ) = ( u r ) 2 + ( u z ) 2 . {\displaystyle \displaystyle \Re (u)(u_{rr}+u_{r}/r+u_{zz})=(u_{r})^{2}+(u_{z})^{2}.} {\displaystyle \displaystyle \Re (u)(u_{rr}+u_{r}/r+u_{zz})=(u_{r})^{2}+(u_{z})^{2}.}

Kullanım amacı

[değiştir | kaynağı değiştir]

Einstein alan denklemlerinin noksansız çözümlerini elde etmek için kullanılan doğrusal olmayan bir kısmi türevsel denklemdir.

Bibliyografya

[değiştir | kaynağı değiştir]
  • Zwillinger, Daniel (1989), Handbook of differential equations, Boston, MA: Academic Press, ISBN 978-0-12-784390-2 

İlgili yayınlar

[değiştir | kaynağı değiştir]

Journal of Mathematical Physics [en] mecmuasında

[değiştir | kaynağı değiştir]
  • 1971: Frederick J. Ernst, Exterior-Algebraic Derivation of Einstein Field Equations Employing a Generalized Basis
  • 1974: Frederick J. Ernst, Complex potential formulation of the axially symmetric gravitational field problem
  • 1974: Frederick J. Ernst, Weyl conform tensor for stationary gravitational fields
  • 1975: Frederick J. Ernst, Black holes in a magnetic universe
  • 1975: Frederick J. Ernst, Erratum: Complex potential formulation of the axially symmetric gravitational field problem
  • 1975: John E. Economou & Frederick J. Ernst, Weyl conform tensor of =2 Tomimatsu–Sato spinning mass gravitational field
  • 1976: Frederick J. Ernst & Walter J. Wild, Kerr black holes in a magnetic universe
  • 1976: Frederick J. Ernst, New representation of the Tomimatsu–Sato solution
  • 1976: Frederick J. Ernst, Removal of the nodal singularity of the C-metric
  • 1977: Frederick J. Ernst, A new family of solutions of the Einstein field equations
  • 1978: Frederick J. Ernst, Coping with different languages in the null tetrad formulation of general relativity
  • 1978: Frederick J. Ernst & I. Hauser, Field equations and integrability conditions for special type N twisting gravitational fields
  • 1978: Frederick J. Ernst, Generalized C-metric
  • 1978: Isidore Hauser & Frederick J. Ernst, On the generation of new solutions of the Einstein–Maxwell field equations
  • 1979: I. Hauser & Frederick J. Ernst, SU(2,1) generation of electrovacs from Minkowski space
  • 1979: (Erratum) Coping with different languages in the null tetrad formulation of general relativity
  • 1979: (Erratum) Generalized C metric
  • 1980: Isidore Hauser & Frederick J. Ernst, A homogeneous Hilbert problem for the Kinnersley–Chitre transformations of electrovac space-times
  • 1980: Isidore Hauser & Frederick J. Ernst, A homogeneous Hilbert problem for the Kinnersley–Chitre transformations
  • 1981: Isidore Hauser & Frederick J. Ernst, Proof of a Geroch conjecture
  • 1982: Dong-sheng Guo & Frederick J. Ernst, Electrovac generalization of Neugebauer's N = 2 solution of the Einstein vacuum field equations
  • 1983: Y. Chen, Dong-sheng Guo & Frederick J. Ernst, Charged spinning mass field involving rational functions
  • 1983: Cornelius Hoenselares & Frederick J. Ernst, Remarks on the Tomimatsu–Sato metrics
  • 1987: Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. I
  • 1987: Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. II
  • 1988: Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. III
  • 1989: Wei Li & Frederick J. Ernst, A family of electrovac colliding wave solutions of Einstein's equations
  • 1989: Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. I
  • 1989: Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. II
  • 1990: Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. III
  • 1990: Cornelius Hoenselares & Frederick J. Ernst, Matching pp waves to the Kerr metric
  • 1991: Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding gravitational plane waves with noncollinear polarizations
  • 1991: Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding gravitational waves with Killing–Cauchy horizons
  • 1991: Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding wave solutions of the Einstein–Maxwell field equations
  • 1991: Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. IV
  • 1991: Wei Li, Isidore Hauser & Frederick J. Ernst, Nonimpulsive colliding gravitational waves with noncollinear polarizations
  • 1993: Frederick J. Ernst & Isidore Hauser, On Gürses's symmetries of the Einstein equations

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Lisans-Fizik, Princeton Üniversitesi ve Doktora-Fizik, University of Wisconsin–Madison [en] (Doktora Tezi: The Wave Functional Description of Elementary Particles with Application to Nucleon Structure); 1964 - 1969: Yardımcı Doçent, 1969 - 1980: Doçent, 1980 - 1987: Professör, Hepsi Fizik-Illinois Institute of Technology [en]; 1987'den sonra Matematik-Kısmî Türevsel Denklemler ve Fizik-Genel Görelilik Kuramı Profesörü, Clarkson University [en] Potsdam, New York [en].
  2. ^ "Weisstein, Eric W, Ernst denklemi, MathWorld--A Wolfram Web". 16 Ağustos 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Mayıs 2015. 
  • g
  • t
  • d
Görelilik
Özel
görelilik
Genel bilgiler
  • Görelilik teorisi
  • Özel görelilik
Ana başlıklar
  • Gözlemci çerçevesi
  • Işık hızı
  • Hiperbolik dikgenlik
  • Çabukluk
  • Maxwell denklemleri
Tasvir
  • Galile göreceliği
  • Galile dönüşümü
  • Lorentz dönüşümü
Neticeler
  • Zaman genişlemesi
  • Bağıl kütle
  • Kütle*enerji eşitliği
  • Uzunluk büzülmesi
  • Eşanlılığın göreceliği
  • Göreli Doppler etkisi
  • Tomas yalpalaması
  • Göreceli diskler
Uzayzaman
  • Işık konisi
  • Hayat Çizgisi
  • Uzayzaman diagramı
  • İki-Dördey
  • Minkowski uzayı
Genel
görelilik
Ana hatlar
  • Genel göreceliğe giriş
  • Genel göreceliğin matematik ifadesi
Ana kavramlar
  • Özel görelilik
  • Eşdeğerlik ilkesi
  • Hayat Çizgisi
  • Riemann uzambilgisi
  • Minkowski çizeneği
  • Penrose çizeneği
Doğa olayları
  • Kara delik
  • Olay ufku
  • Çerçeve sürükleme
  • Yersel etki
  • Kütleçekimsel merceklenme
  • Kütleçekimsel tekillik
  • Kütleçekimsel dalga
  • Merdiven çatışkısı
  • İkiz çatışkısı
  • Genel görecelikte İki-Cisim problemi
Denklemler
  • Arnowitt-Deser-Misner biçimselciliği
  • Baumgarte-Shapiro-Shibata-Nakamura biçimselciliği
  • Einstein alan denklemleri
  • Genel görecelikte jeodesik denklemi
  • Friedmann denklemleri
  • Doğrusallaştırılmış yerçekim
  • Newton sonrası biçimselciliği
  • Raychaudhuri denklemi
  • Hamilton–Jacobi–Einstein denklemi
  • Ernst denklemi
İleri kuramlar
  • Brans–Dicke kuramı
  • Kaluza–Klein kuramı
  • Mach ilkesi
  • Kuantum kütleçekim
Çözümler
  • Schwarzschild metriği (dahili)
  • Reissner–Nordström
  • Gödel metriği
  • Kerr metriği
  • Kerr-Newman metriği
  • Kasner metriği
  • Taub–NUT uzayı
  • Milne modeli
  • Friedmann–Lemaître–Robertson–Walker metriği
  • pp-dalgası
  • van Stockum tozu
  • Weyl−Lewis−Papapetrou ko-ordinatları
Bilim
insanları
  • Einstein
  • Lorentz
  • Hilbert
  • Poincaré
  • Schwarzschild
  • de Sitter
  • Reissner
  • Nordström
  • Weyl
  • Eddington
  • Fridman
  • Milne
  • Zwicky
  • Lemaître
  • Gödel
  • Wheeler
  • Robertson
  • Bardeen
  • Walker
  • Kerr
  • Chandrasekhar
  • Ehlers
  • Penrose
  • Hawking
  • Taylor
  • Hulse
  • Stockum
  • Taub
  • Newman
  • Yau
  • Thorne
  • Weiss
  • Bondi
  • Misner
  • diğerleri
Einstein alan denklemleri:     G μ ν + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }} {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }}     ve Ernst denklemi aracılığı ile analitik çözümleri:     ℜ ( u ) ( u r r + u r / r + u z z ) = ( u r ) 2 + ( u z ) 2 . {\displaystyle \displaystyle \Re (u)(u_{rr}+u_{r}/r+u_{zz})=(u_{r})^{2}+(u_{z})^{2}.} {\displaystyle \displaystyle \Re (u)(u_{rr}+u_{r}/r+u_{zz})=(u_{r})^{2}+(u_{z})^{2}.}
"https://tr.wikipedia.org/w/index.php?title=Ernst_denklemi&oldid=35878100" sayfasından alınmıştır
Kategoriler:
  • Genel görelilik
  • Kısmi diferansiyel denklemler
  • Sayfa en son 20.15, 21 Ağustos 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Ernst denklemi
Konu ekle