Wallis çarpımı - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 İntegral yoluyla kanıt
  • 2 Sinüs fonksiyonu için Euler'in sonsuz çarpımını kullanarak kanıt
  • 3 Stirling yaklaşımıyla ilişkisi
  • 4 Riemann zeta fonksiyonunun sıfır noktasında türevi
  • 5 Ayrıca bakınız
  • 6 Kaynaklar
  • 7 Dş bağlantılar

Wallis çarpımı

  • العربية
  • Català
  • Deutsch
  • English
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Հայերեն
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Nederlands
  • Polski
  • Português
  • Română
  • Русский
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Matematikte, Wallis çarpımı, π {\displaystyle \pi } {\displaystyle \pi } sayısını sonsuz çarpım olarak veren bir ifadedir. 1656'da John Wallis tarafından yayınlanmıstır ve şu şekilde ifade edilmektedir:[1]

π 2 = ∏ n = 1 ∞ 4 n 2 4 n 2 − 1 = ∏ n = 1 ∞ ( 2 n 2 n − 1 ⋅ 2 n 2 n + 1 ) = ( 2 1 ⋅ 2 3 ) ⋅ ( 4 3 ⋅ 4 5 ) ⋅ ( 6 5 ⋅ 6 7 ) ⋅ ( 8 7 ⋅ 8 9 ) ⋅ ⋯ {\displaystyle {\begin{aligned}{\frac {\pi }{2}}&=\prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)\\[6pt]&={\Big (}{\frac {2}{1}}\cdot {\frac {2}{3}}{\Big )}\cdot {\Big (}{\frac {4}{3}}\cdot {\frac {4}{5}}{\Big )}\cdot {\Big (}{\frac {6}{5}}\cdot {\frac {6}{7}}{\Big )}\cdot {\Big (}{\frac {8}{7}}\cdot {\frac {8}{9}}{\Big )}\cdot \;\cdots \\\end{aligned}}} {\displaystyle {\begin{aligned}{\frac {\pi }{2}}&=\prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)\\[6pt]&={\Big (}{\frac {2}{1}}\cdot {\frac {2}{3}}{\Big )}\cdot {\Big (}{\frac {4}{3}}\cdot {\frac {4}{5}}{\Big )}\cdot {\Big (}{\frac {6}{5}}\cdot {\frac {6}{7}}{\Big )}\cdot {\Big (}{\frac {8}{7}}\cdot {\frac {8}{9}}{\Big )}\cdot \;\cdots \\\end{aligned}}}

İntegral yoluyla kanıt

[değiştir | kaynağı değiştir]

Wallis bu sonsuz çarpımı enterpolasyon kullanarak türetmiştir; ancak, yöntemi titiz olarak kabul edilmemektedir. Daha modern bir çıkarım, ∫ 0 π sin n ⁡ x d x {\displaystyle \int _{0}^{\pi }\sin ^{n}x\,dx} {\displaystyle \int _{0}^{\pi }\sin ^{n}x\,dx} integrali n tek ve çift değerler alırken incelenerek elde edilebilir.

Wallis integrallerinin bir hali olan

I ( n ) = ∫ 0 π sin n ⁡ x d x {\displaystyle I(n)=\int _{0}^{\pi }\sin ^{n}x\,dx} {\displaystyle I(n)=\int _{0}^{\pi }\sin ^{n}x\,dx}

tanımlayalım. Kısmi integral yöntemi kullanarak

u = sin n − 1 ⁡ x ⇒ d u = ( n − 1 ) sin n − 2 ⁡ x cos ⁡ x d x d v = sin ⁡ x d x ⇒ v = − cos ⁡ x {\displaystyle {\begin{aligned}u&=\sin ^{n-1}x\\\Rightarrow du&=(n-1)\sin ^{n-2}x\cos x\,dx\\dv&=\sin x\,dx\\\Rightarrow v&=-\cos x\end{aligned}}} {\displaystyle {\begin{aligned}u&=\sin ^{n-1}x\\\Rightarrow du&=(n-1)\sin ^{n-2}x\cos x\,dx\\dv&=\sin x\,dx\\\Rightarrow v&=-\cos x\end{aligned}}}
⇒ I ( n ) = ∫ 0 π sin n ⁡ x d x = − sin n − 1 ⁡ x cos ⁡ x | 0 π − ∫ 0 π ( − cos ⁡ x ) ( n − 1 ) sin n − 2 ⁡ x cos ⁡ x d x = 0 + ( n − 1 ) ∫ 0 π cos 2 ⁡ x sin n − 2 ⁡ x d x , n > 1 = ( n − 1 ) ∫ 0 π ( 1 − sin 2 ⁡ x ) sin n − 2 ⁡ x d x = ( n − 1 ) ∫ 0 π sin n − 2 ⁡ x d x − ( n − 1 ) ∫ 0 π sin n ⁡ x d x = ( n − 1 ) I ( n − 2 ) − ( n − 1 ) I ( n ) = n − 1 n I ( n − 2 ) ⇒ I ( n ) I ( n − 2 ) = n − 1 n {\displaystyle {\begin{aligned}\Rightarrow I(n)&=\int _{0}^{\pi }\sin ^{n}x\,dx\\[6pt]{}&=-\sin ^{n-1}x\cos x{\Biggl |}_{0}^{\pi }-\int _{0}^{\pi }(-\cos x)(n-1)\sin ^{n-2}x\cos x\,dx\\[6pt]{}&=0+(n-1)\int _{0}^{\pi }\cos ^{2}x\sin ^{n-2}x\,dx,\qquad n>1\\[6pt]{}&=(n-1)\int _{0}^{\pi }(1-\sin ^{2}x)\sin ^{n-2}x\,dx\\[6pt]{}&=(n-1)\int _{0}^{\pi }\sin ^{n-2}x\,dx-(n-1)\int _{0}^{\pi }\sin ^{n}x\,dx\\[6pt]{}&=(n-1)I(n-2)-(n-1)I(n)\\[6pt]{}&={\frac {n-1}{n}}I(n-2)\\[6pt]\Rightarrow {\frac {I(n)}{I(n-2)}}&={\frac {n-1}{n}}\\[6pt]\end{aligned}}} {\displaystyle {\begin{aligned}\Rightarrow I(n)&=\int _{0}^{\pi }\sin ^{n}x\,dx\\[6pt]{}&=-\sin ^{n-1}x\cos x{\Biggl |}_{0}^{\pi }-\int _{0}^{\pi }(-\cos x)(n-1)\sin ^{n-2}x\cos x\,dx\\[6pt]{}&=0+(n-1)\int _{0}^{\pi }\cos ^{2}x\sin ^{n-2}x\,dx,\qquad n>1\\[6pt]{}&=(n-1)\int _{0}^{\pi }(1-\sin ^{2}x)\sin ^{n-2}x\,dx\\[6pt]{}&=(n-1)\int _{0}^{\pi }\sin ^{n-2}x\,dx-(n-1)\int _{0}^{\pi }\sin ^{n}x\,dx\\[6pt]{}&=(n-1)I(n-2)-(n-1)I(n)\\[6pt]{}&={\frac {n-1}{n}}I(n-2)\\[6pt]\Rightarrow {\frac {I(n)}{I(n-2)}}&={\frac {n-1}{n}}\\[6pt]\end{aligned}}}

Şimdi, kolaylık olması açısından iki değişken ikâmesi yaparak şunu elde edelim:

I ( 2 n ) = 2 n − 1 2 n I ( 2 n − 2 ) {\displaystyle I(2n)={\frac {2n-1}{2n}}I(2n-2)} {\displaystyle I(2n)={\frac {2n-1}{2n}}I(2n-2)}
I ( 2 n + 1 ) = 2 n 2 n + 1 I ( 2 n − 1 ) {\displaystyle I(2n+1)={\frac {2n}{2n+1}}I(2n-1)} {\displaystyle I(2n+1)={\frac {2n}{2n+1}}I(2n-1)}

I ( 0 ) {\displaystyle I(0)} {\displaystyle I(0)} ve I ( 1 ) {\displaystyle I(1)} {\displaystyle I(1)} değerleri sonradan kullanmak üzere hemen ve kolaylıkla hesapalanabilir.

I ( 0 ) = ∫ 0 π d x = x | 0 π = π I ( 1 ) = ∫ 0 π sin ⁡ x d x = − cos ⁡ x | 0 π = ( − cos ⁡ π ) − ( − cos ⁡ 0 ) = − ( − 1 ) − ( − 1 ) = 2 {\displaystyle {\begin{aligned}I(0)&=\int _{0}^{\pi }dx=x{\Biggl |}_{0}^{\pi }=\pi \\[6pt]I(1)&=\int _{0}^{\pi }\sin x\,dx=-\cos x{\Biggl |}_{0}^{\pi }=(-\cos \pi )-(-\cos 0)=-(-1)-(-1)=2\\[6pt]\end{aligned}}} {\displaystyle {\begin{aligned}I(0)&=\int _{0}^{\pi }dx=x{\Biggl |}_{0}^{\pi }=\pi \\[6pt]I(1)&=\int _{0}^{\pi }\sin x\,dx=-\cos x{\Biggl |}_{0}^{\pi }=(-\cos \pi )-(-\cos 0)=-(-1)-(-1)=2\\[6pt]\end{aligned}}}

Çift değerler için hesaplamak için I ( 2 n ) {\displaystyle I(2n)} {\displaystyle I(2n)} bağlantısını tekrarlayarak kullanıyoruz ve daha önce hesaplanan I ( 0 ) {\displaystyle I(0)} {\displaystyle I(0)} değerinde duruyoruz:

I ( 2 n ) = ∫ 0 π sin 2 n ⁡ x d x = 2 n − 1 2 n I ( 2 n − 2 ) = 2 n − 1 2 n ⋅ 2 n − 3 2 n − 2 I ( 2 n − 4 ) {\displaystyle I(2n)=\int _{0}^{\pi }\sin ^{2n}x\,dx={\frac {2n-1}{2n}}I(2n-2)={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}I(2n-4)} {\displaystyle I(2n)=\int _{0}^{\pi }\sin ^{2n}x\,dx={\frac {2n-1}{2n}}I(2n-2)={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}I(2n-4)}
= 2 n − 1 2 n ⋅ 2 n − 3 2 n − 2 ⋅ 2 n − 5 2 n − 4 ⋅ ⋯ ⋅ 5 6 ⋅ 3 4 ⋅ 1 2 I ( 0 ) = π ∏ k = 1 n 2 k − 1 2 k {\displaystyle ={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}\cdot {\frac {2n-5}{2n-4}}\cdot \cdots \cdot {\frac {5}{6}}\cdot {\frac {3}{4}}\cdot {\frac {1}{2}}I(0)=\pi \prod _{k=1}^{n}{\frac {2k-1}{2k}}} {\displaystyle ={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}\cdot {\frac {2n-5}{2n-4}}\cdot \cdots \cdot {\frac {5}{6}}\cdot {\frac {3}{4}}\cdot {\frac {1}{2}}I(0)=\pi \prod _{k=1}^{n}{\frac {2k-1}{2k}}}

Tek değerler için de benzer bir yöntem takip edilebilir ve I ( 1 ) {\displaystyle I(1)} {\displaystyle I(1)} değerinde durulur:

I ( 2 n + 1 ) = ∫ 0 π sin 2 n + 1 ⁡ x d x = 2 n 2 n + 1 I ( 2 n − 1 ) = 2 n 2 n + 1 ⋅ 2 n − 2 2 n − 1 I ( 2 n − 3 ) {\displaystyle I(2n+1)=\int _{0}^{\pi }\sin ^{2n+1}x\,dx={\frac {2n}{2n+1}}I(2n-1)={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}I(2n-3)} {\displaystyle I(2n+1)=\int _{0}^{\pi }\sin ^{2n+1}x\,dx={\frac {2n}{2n+1}}I(2n-1)={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}I(2n-3)}
= 2 n 2 n + 1 ⋅ 2 n − 2 2 n − 1 ⋅ 2 n − 4 2 n − 3 ⋅ ⋯ ⋅ 6 7 ⋅ 4 5 ⋅ 2 3 I ( 1 ) = 2 ∏ k = 1 n 2 k 2 k + 1 {\displaystyle ={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n-4}{2n-3}}\cdot \cdots \cdot {\frac {6}{7}}\cdot {\frac {4}{5}}\cdot {\frac {2}{3}}I(1)=2\prod _{k=1}^{n}{\frac {2k}{2k+1}}} {\displaystyle ={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n-4}{2n-3}}\cdot \cdots \cdot {\frac {6}{7}}\cdot {\frac {4}{5}}\cdot {\frac {2}{3}}I(1)=2\prod _{k=1}^{n}{\frac {2k}{2k+1}}}

Ayrıca, sin ⁡ x ≤ x {\displaystyle \sin {x}\leq x} {\displaystyle \sin {x}\leq x} gerçeğine dayanarak

sin 2 n + 1 ⁡ x ≤ sin 2 n ⁡ x ≤ sin 2 n − 1 ⁡ x , 0 ≤ x ≤ π {\displaystyle \sin ^{2n+1}x\leq \sin ^{2n}x\leq \sin ^{2n-1}x,0\leq x\leq \pi } {\displaystyle \sin ^{2n+1}x\leq \sin ^{2n}x\leq \sin ^{2n-1}x,0\leq x\leq \pi }
⇒ I ( 2 n + 1 ) ≤ I ( 2 n ) ≤ I ( 2 n − 1 ) {\displaystyle \Rightarrow I(2n+1)\leq I(2n)\leq I(2n-1)} {\displaystyle \Rightarrow I(2n+1)\leq I(2n)\leq I(2n-1)}

olduğunu gözlemliyoruz. Her iki tarafı I ( 2 n + 1 ) {\displaystyle I(2n+1)} {\displaystyle I(2n+1)} ile bölerek ve ayrıca I ( 2 n ) = 2 n − 1 2 n I ( 2 n − 2 ) {\displaystyle I(2n)={\frac {2n-1}{2n}}I(2n-2)} {\displaystyle I(2n)={\frac {2n-1}{2n}}I(2n-2)} ve I ( 2 n + 1 ) = 2 n 2 n + 1 I ( 2 n − 1 ) {\displaystyle I(2n+1)={\frac {2n}{2n+1}}I(2n-1)} {\displaystyle I(2n+1)={\frac {2n}{2n+1}}I(2n-1)} bağlantılarını kullanarak

⇒ 1 ≤ I ( 2 n ) I ( 2 n + 1 ) ≤ I ( 2 n − 1 ) I ( 2 n + 1 ) = 2 n + 1 2 n {\displaystyle \Rightarrow 1\leq {\frac {I(2n)}{I(2n+1)}}\leq {\frac {I(2n-1)}{I(2n+1)}}={\frac {2n+1}{2n}}} {\displaystyle \Rightarrow 1\leq {\frac {I(2n)}{I(2n+1)}}\leq {\frac {I(2n-1)}{I(2n+1)}}={\frac {2n+1}{2n}}}

elde ediyoruz. Sıkıştırma teoremi ile

⇒ lim n → ∞ I ( 2 n ) I ( 2 n + 1 ) = 1 {\displaystyle \Rightarrow \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}=1} {\displaystyle \Rightarrow \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}=1}

elde edilir. Yani,

lim n → ∞ I ( 2 n ) I ( 2 n + 1 ) = π 2 lim n → ∞ ∏ k = 1 n ( 2 k − 1 2 k ⋅ 2 k + 1 2 k ) = 1 {\displaystyle \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}={\frac {\pi }{2}}\lim _{n\rightarrow \infty }\prod _{k=1}^{n}\left({\frac {2k-1}{2k}}\cdot {\frac {2k+1}{2k}}\right)=1} {\displaystyle \lim _{n\rightarrow \infty }{\frac {I(2n)}{I(2n+1)}}={\frac {\pi }{2}}\lim _{n\rightarrow \infty }\prod _{k=1}^{n}\left({\frac {2k-1}{2k}}\cdot {\frac {2k+1}{2k}}\right)=1}
⇒ π 2 = ∏ k = 1 ∞ ( 2 k 2 k − 1 ⋅ 2 k 2 k + 1 ) = 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋅ ⋯ {\displaystyle \Rightarrow {\frac {\pi }{2}}=\prod _{k=1}^{\infty }\left({\frac {2k}{2k-1}}\cdot {\frac {2k}{2k+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \cdots } {\displaystyle \Rightarrow {\frac {\pi }{2}}=\prod _{k=1}^{\infty }\left({\frac {2k}{2k-1}}\cdot {\frac {2k}{2k+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \cdots }

elde edilir.

Sinüs fonksiyonu için Euler'in sonsuz çarpımını kullanarak kanıt

[değiştir | kaynağı değiştir]

Yukarıdaki ispat genellikle modern kalkülüs ders kitaplarında yer alsa da, geriye dönüp bakıldığında Wallis çarpımı, sinüs fonksiyonu için daha sonra elde edilmişl olan Euler sonsuz çarpımının kolay bir sonucu olarak ortaya çıkar.

sin ⁡ x x = ∏ n = 1 ∞ ( 1 − x 2 n 2 π 2 ) {\displaystyle {\frac {\sin x}{x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)} {\displaystyle {\frac {\sin x}{x}}=\prod _{n=1}^{\infty }\left(1-{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)}

x = π 2 {\displaystyle x={\frac {\pi }{2}}} {\displaystyle x={\frac {\pi }{2}}} olsun. O zaman,

⇒ 2 π = ∏ n = 1 ∞ ( 1 − 1 4 n 2 ) ⇒ π 2 = ∏ n = 1 ∞ ( 4 n 2 4 n 2 − 1 ) = ∏ n = 1 ∞ ( 2 n 2 n − 1 ⋅ 2 n 2 n + 1 ) = 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ 6 5 ⋅ 6 7 ⋯ {\displaystyle {\begin{aligned}\Rightarrow {\frac {2}{\pi }}&=\prod _{n=1}^{\infty }\left(1-{\frac {1}{4n^{2}}}\right)\\[6pt]\Rightarrow {\frac {\pi }{2}}&=\prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\right)\\[6pt]&=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdots \end{aligned}}} {\displaystyle {\begin{aligned}\Rightarrow {\frac {2}{\pi }}&=\prod _{n=1}^{\infty }\left(1-{\frac {1}{4n^{2}}}\right)\\[6pt]\Rightarrow {\frac {\pi }{2}}&=\prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\right)\\[6pt]&=\prod _{n=1}^{\infty }\left({\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdots \end{aligned}}}   [1]

Stirling yaklaşımıyla ilişkisi

[değiştir | kaynağı değiştir]

Faktöriyel fonksiyonu n ! {\displaystyle n!} {\displaystyle n!} için ifade edilen Stirling yaklaşımı şunu ifade eder:

n ! = 2 π n ( n e ) n [ 1 + O ( 1 n ) ] . {\displaystyle n!={\sqrt {2\pi n}}{\left({\frac {n}{e}}\right)}^{n}\left[1+O\left({\frac {1}{n}}\right)\right].} {\displaystyle n!={\sqrt {2\pi n}}{\left({\frac {n}{e}}\right)}^{n}\left[1+O\left({\frac {1}{n}}\right)\right].}

Wallis çarpımındaki sonlu çarpımları ele elalım:

p k = ∏ n = 1 k 2 n 2 n − 1 2 n 2 n + 1 . {\displaystyle p_{k}=\prod _{n=1}^{k}{\frac {2n}{2n-1}}{\frac {2n}{2n+1}}.} {\displaystyle p_{k}=\prod _{n=1}^{k}{\frac {2n}{2n-1}}{\frac {2n}{2n+1}}.}

Bu çarpımları yeniden düzenleyerek

p k = 1 2 k + 1 ∏ n = 1 k ( 2 n ) 4 [ ( 2 n ) ( 2 n − 1 ) ] 2 = 1 2 k + 1 ⋅ 2 4 k ( k ! ) 4 [ ( 2 k ) ! ] 2 . {\displaystyle {\begin{aligned}p_{k}&={1 \over {2k+1}}\prod _{n=1}^{k}{\frac {(2n)^{4}}{[(2n)(2n-1)]^{2}}}\\[6pt]&={1 \over {2k+1}}\cdot {{2^{4k}\,(k!)^{4}} \over {[(2k)!]^{2}}}.\end{aligned}}} {\displaystyle {\begin{aligned}p_{k}&={1 \over {2k+1}}\prod _{n=1}^{k}{\frac {(2n)^{4}}{[(2n)(2n-1)]^{2}}}\\[6pt]&={1 \over {2k+1}}\cdot {{2^{4k}\,(k!)^{4}} \over {[(2k)!]^{2}}}.\end{aligned}}}

yazabiliriz. Bu ifadede Stirling yaklaşımını hem k ! {\displaystyle k!} {\displaystyle k!} hem de ( 2 k ) ! {\displaystyle (2k)!} {\displaystyle (2k)!} için kullanırsak, p k {\displaystyle p_{k}} {\displaystyle p_{k}}'nin k → ∞ {\displaystyle k\rightarrow \infty } {\displaystyle k\rightarrow \infty } iken π 2 {\displaystyle {\frac {\pi }{2}}} {\displaystyle {\frac {\pi }{2}}} ifadesine yakınsadığı gösterilebilir.

Riemann zeta fonksiyonunun sıfır noktasında türevi

[değiştir | kaynağı değiştir]

Riemann zeta fonksiyonu ve Dirichlet eta fonksiyonu şu şekilde tanımlanabilir:[1]

ζ ( s ) = ∑ n = 1 ∞ 1 n s , ℜ ( s ) > 1 η ( s ) = ( 1 − 2 1 − s ) ζ ( s ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n s , ℜ ( s ) > 0 {\displaystyle {\begin{aligned}\zeta (s)&=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}},\Re (s)>1\\[6pt]\eta (s)&=(1-2^{1-s})\zeta (s)\\[6pt]&=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n^{s}}},\Re (s)>0\end{aligned}}} {\displaystyle {\begin{aligned}\zeta (s)&=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}},\Re (s)>1\\[6pt]\eta (s)&=(1-2^{1-s})\zeta (s)\\[6pt]&=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{n^{s}}},\Re (s)>0\end{aligned}}}

Son seriye Euler dönüşümü uygulandığında aşağıdaki elde edilir:

η ( s ) = 1 2 + 1 2 ∑ n = 1 ∞ ( − 1 ) n − 1 [ 1 n s − 1 ( n + 1 ) s ] , ℜ ( s ) > − 1 ⇒ η ′ ( s ) = ( 1 − 2 1 − s ) ζ ′ ( s ) + 2 1 − s ( ln ⁡ 2 ) ζ ( s ) = − 1 2 ∑ n = 1 ∞ ( − 1 ) n − 1 [ ln ⁡ n n s − ln ⁡ ( n + 1 ) ( n + 1 ) s ] , ℜ ( s ) > − 1 {\displaystyle {\begin{aligned}\eta (s)&={\frac {1}{2}}+{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[{\frac {1}{n^{s}}}-{\frac {1}{(n+1)^{s}}}\right],\Re (s)>-1\\[6pt]\Rightarrow \eta '(s)&=(1-2^{1-s})\zeta '(s)+2^{1-s}(\ln 2)\zeta (s)\\[6pt]&=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[{\frac {\ln n}{n^{s}}}-{\frac {\ln(n+1)}{(n+1)^{s}}}\right],\Re (s)>-1\end{aligned}}} {\displaystyle {\begin{aligned}\eta (s)&={\frac {1}{2}}+{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[{\frac {1}{n^{s}}}-{\frac {1}{(n+1)^{s}}}\right],\Re (s)>-1\\[6pt]\Rightarrow \eta '(s)&=(1-2^{1-s})\zeta '(s)+2^{1-s}(\ln 2)\zeta (s)\\[6pt]&=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[{\frac {\ln n}{n^{s}}}-{\frac {\ln(n+1)}{(n+1)^{s}}}\right],\Re (s)>-1\end{aligned}}}
⇒ η ′ ( 0 ) = − ζ ′ ( 0 ) − ln ⁡ 2 = − 1 2 ∑ n = 1 ∞ ( − 1 ) n − 1 [ ln ⁡ n − ln ⁡ ( n + 1 ) ] = − 1 2 ∑ n = 1 ∞ ( − 1 ) n − 1 ln ⁡ n n + 1 = − 1 2 ( ln ⁡ 1 2 − ln ⁡ 2 3 + ln ⁡ 3 4 − ln ⁡ 4 5 + ln ⁡ 5 6 − ⋯ ) = 1 2 ( ln ⁡ 2 1 + ln ⁡ 2 3 + ln ⁡ 4 3 + ln ⁡ 4 5 + ln ⁡ 6 5 + ⋯ ) = 1 2 ln ⁡ ( 2 1 ⋅ 2 3 ⋅ 4 3 ⋅ 4 5 ⋅ ⋯ ) = 1 2 ln ⁡ π 2 ⇒ ζ ′ ( 0 ) = − 1 2 ln ⁡ ( 2 π ) {\displaystyle {\begin{aligned}\Rightarrow \eta '(0)&=-\zeta '(0)-\ln 2=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[\ln n-\ln(n+1)\right]\\[6pt]&=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\ln {\frac {n}{n+1}}\\[6pt]&=-{\frac {1}{2}}\left(\ln {\frac {1}{2}}-\ln {\frac {2}{3}}+\ln {\frac {3}{4}}-\ln {\frac {4}{5}}+\ln {\frac {5}{6}}-\cdots \right)\\[6pt]&={\frac {1}{2}}\left(\ln {\frac {2}{1}}+\ln {\frac {2}{3}}+\ln {\frac {4}{3}}+\ln {\frac {4}{5}}+\ln {\frac {6}{5}}+\cdots \right)\\[6pt]&={\frac {1}{2}}\ln \left({\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot \cdots \right)={\frac {1}{2}}\ln {\frac {\pi }{2}}\\\Rightarrow \zeta '(0)&=-{\frac {1}{2}}\ln \left(2\pi \right)\end{aligned}}} {\displaystyle {\begin{aligned}\Rightarrow \eta '(0)&=-\zeta '(0)-\ln 2=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\left[\ln n-\ln(n+1)\right]\\[6pt]&=-{\frac {1}{2}}\sum _{n=1}^{\infty }(-1)^{n-1}\ln {\frac {n}{n+1}}\\[6pt]&=-{\frac {1}{2}}\left(\ln {\frac {1}{2}}-\ln {\frac {2}{3}}+\ln {\frac {3}{4}}-\ln {\frac {4}{5}}+\ln {\frac {5}{6}}-\cdots \right)\\[6pt]&={\frac {1}{2}}\left(\ln {\frac {2}{1}}+\ln {\frac {2}{3}}+\ln {\frac {4}{3}}+\ln {\frac {4}{5}}+\ln {\frac {6}{5}}+\cdots \right)\\[6pt]&={\frac {1}{2}}\ln \left({\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot \cdots \right)={\frac {1}{2}}\ln {\frac {\pi }{2}}\\\Rightarrow \zeta '(0)&=-{\frac {1}{2}}\ln \left(2\pi \right)\end{aligned}}}

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • John Wallis
  • Viète formülü
  • Wallis eleği
  • Leibniz serisi
  • Pippenger çarpım formülü

Kaynaklar

[değiştir | kaynağı değiştir]
  1. ^ a b c "Wallis Formula". 10 Ekim 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Ekim 2024. 

Dş bağlantılar

[değiştir | kaynağı değiştir]
  • Hazewinkel, Michiel, (Ed.) (2001), "Wallis formula", Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104 
  • "Why does this product equal π/2? A new proof of the Wallis formula for π". 3Blue1Brown. 20 Nisan 2018. 12 Aralık 2021 tarihinde kaynağından arşivlendi – YouTube vasıtasıyla. 
"https://tr.wikipedia.org/w/index.php?title=Wallis_çarpımı&oldid=35835974" sayfasından alınmıştır
Kategoriler:
  • Sonsuz çarpımlar
  • Pi algoritmaları
  • Sayfa en son 08.49, 16 Ağustos 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Wallis çarpımı
Konu ekle