Thompson grupları - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 F grubunun elemanları
  • 2 İkili yeniden düzenleme
  • 3 Kaynakça

Thompson grupları

  • English
  • 日本語
  • Русский
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

'Thompson F, T ve V grupları 1965 yılında Richard Thompsonın mantık çalışmalarının bir parçası ve Von Neumann Sanısına karşıt örnek olarak ortaya çıkmıştır.

Thompson Grupları, özellikle F, grup kuramının genel varsayımlarına karşıt örnek olan sıra dışı özelliklere sahiptir ve matematiğin birçok değişik alanlarında ortaya çıkmaktadır. Kriptografi ve Kombinatorik bu alanlardan bazılarıdır. F grubu T grubunun bir alt kümesi, T grubu da V grubunun bir alt kümesidir.

Bu üç grup sonsuzdur fakat sonlu tasviri vardır. T ve V grupları sonlu tasviri olmasının yanında sonsuz ve basit gruplardır. F ise basit grup değildir fakat komütatör alt grubu [F, F] basittir ve bütün bölüm grupları ise değişmelidir.

F grubunun elemanları

[değiştir | kaynağı değiştir]

Thompson F grubu birim aralıktan birim aralığa giden birtakım parçalı doğrusal homeomorfizmalardan oluşur. Elemanları fonksiyonlar olduğu için bu grubun işlemi fonksiyon bileşkesidir.

Grubun elemanları birim aralıkta tanımlı bir parçalı doğrusal homeomorfizma olan ikili yeniden düzenlemelerdir.

İkili yeniden düzenleme

[değiştir | kaynağı değiştir]

Bir ikili yeniden düzenleme elde etmek için iki tane aynı sayıda parçası olan birim aralığın ikili alt bölmesine ihtiyaç vardır. Birim aralığın bir ikili alt bölmesini elde etmek için ilk önce birim aralık ikiye bölünür. Daha sonra bu iki parçayı istenilen parçadan ikiye bölmeye devam edilir. Bu şekilde bir ikili alt bölme elde edilir. İki tane aynı sayıda parçası olan ikili alt bölme arasında bir parçalı doğrusal homeomorfizma yazılır. Bu yöntemle elde edilen parçalı doğrusal homeomorfizma ikili yeniden düzenleme olur.[1]

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ James Michael Belk (Ağustos 2004). "THOMPSON'S GROUP F" (PDF) (İngilizce). 9 Ağustos 2017 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 9 Haziran 2019. 
"https://tr.wikipedia.org/w/index.php?title=Thompson_grupları&oldid=27147091" sayfasından alınmıştır
Kategori:
  • Sonsuz grup teorisi
  • Sayfa en son 15.14, 23 Şubat 2022 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Thompson grupları
Konu ekle