Maxwell ilişkileri - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Eşitlikler
  • 2 En yaygın dört Maxwell ilişkisi
  • 3 Genel Maxwell ilişkileri

Maxwell ilişkileri

  • العربية
  • Català
  • Čeština
  • Dansk
  • Deutsch
  • English
  • Español
  • فارسی
  • Suomi
  • Français
  • עברית
  • Hrvatski
  • İtaliano
  • 日本語
  • 한국어
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Slovenščina
  • Svenska
  • ไทย
  • Українська
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Maxwell ilişkileri" – haber · gazete · kitap · akademik · JSTOR
(Eylül 2022) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Termodinamik
Klasik Carnot ısı makinesi
Dallar
  • Klasik
  • İstatistiksel
  • Kimyasal
  • Kuantum termodinamiği
  • Denge / Dengesizlik
Kanunlar
  • Sıfırıncı
  • Birinci
  • İkinci
  • Üçüncü
Sistemler
  • Kapalı sistem
  • İzole sistem
Durum
  • Hâl denklemi
  • İdeal gaz
  • Gerçek gaz
  • Maddenin hâlleri
  • Faz (madde)
  • Denge
  • Kontrol hacmi
  • Enstrümanlar
Süreçler
  • İzobarik
  • İzokorik
  • İzotermal
  • Adyabatik
  • İzentropik
  • İzentalpik
  • Kuazi-statik
  • Politropik
  • Serbest genişleme
  • Tersinirlik
  • Tersinmezlik
  • Endotersinirlik
Çevrimler
  • Isı motorları
  • Isı pompaları
  • Isıl verim
Sistem özellikleri
Not: Eşlenik değişkenler italik yazılmıştır.
  • Özellik diyagramları
  • Yeğin ve yaygın özellikler
Süreç fonksiyonları
  • İş
  • Isı
Hâl fonksiyonları
  • Sıcaklık / Entropi (giriş)
  • Basınç / Hacim
  • Kimyasal potansiyel / Parçacık sayısı
  • Buhar kalitesi
  • İndirgenmiş özellik
Malzeme özellikleri
  • Özellik veritabanları
Isı sığası  c = {\displaystyle c=} {\displaystyle c=}
T {\displaystyle T} {\displaystyle T} ∂ S {\displaystyle \partial S} {\displaystyle \partial S}
N {\displaystyle N} {\displaystyle N} ∂ T {\displaystyle \partial T} {\displaystyle \partial T}
Sıkıştırılabilirlik  β = − {\displaystyle \beta =-} {\displaystyle \beta =-}
1 {\displaystyle 1} {\displaystyle 1} ∂ V {\displaystyle \partial V} {\displaystyle \partial V}
V {\displaystyle V} {\displaystyle V} ∂ p {\displaystyle \partial p} {\displaystyle \partial p}
Genleşme  α = {\displaystyle \alpha =} {\displaystyle \alpha =}
1 {\displaystyle 1} {\displaystyle 1} ∂ V {\displaystyle \partial V} {\displaystyle \partial V}
V {\displaystyle V} {\displaystyle V} ∂ T {\displaystyle \partial T} {\displaystyle \partial T}
Denklemler
  • Carnot teoremi
  • Clausius teoremi
  • Temel ilişki
  • İdeal gaz yasası
  • Maxwell ilişkileri
  • Çift taraflı Onsager bağıntıları
  • Bridgman denklemleri
  • Termodinamik denklemler tablosu
Potansiyeller
  • Serbest enerji
  • Serbest entropi
  • İç enerji
    U ( S , V ) {\displaystyle U(S,V)} {\displaystyle U(S,V)}
  • Entalpi
    H ( S , p ) = U + p V {\displaystyle H(S,p)=U+pV} {\displaystyle H(S,p)=U+pV}
  • Helmholtz serbest enerjisi
    A ( T , V ) = U − T S {\displaystyle A(T,V)=U-TS} {\displaystyle A(T,V)=U-TS}
  • Gibbs serbest enerjisi
    G ( T , p ) = H − T S {\displaystyle G(T,p)=H-TS} {\displaystyle G(T,p)=H-TS}
  • Tarih
  • Kültür
Tarih
  • Genel
  • Entropi
  • Gaz yasaları
  • "Devridaim" makineleri
Felsefe
  • Entropi ve zaman
  • Entropi ve yaşam
  • Brownian ratchet
  • Maxwell'in Cini
  • Isı ölümü paradoksu
  • Loschmidt paradoksu
  • Sinerjetik
Teoriler
  • Kalorik teorisi
  • Vis viva ("yaşam gücü")
  • Isının mekanik eşdeğeri
  • Tahrik gücü
Temel yayınlar
  • "An Experimental Enquiry
    Concerning ... Heat
    "
  • "On the Equilibrium of
    Heterogeneous Substances
    "
  • "Reflections on the
    Motive Power of Fire
    "
Zaman çizelgeleri
  • Termodinamik
  • Isı makineleri
  • Sanat
  • Eğitim
  • Maxwell'in termodinamik yüzeyi
  • Enerji dağıtımı olarak entropi
Bilim insanları
  • Bernoulli
  • Boltzmann
  • Carnot
  • Clapeyron
  • Clausius
  • Carathéodory
  • Duhem
  • Gibbs
  • von Helmholtz
  • Joule
  • Maxwell
  • von Mayer
  • Onsager
  • Rankine
  • Smeaton
  • Stahl
  • Thompson
  • Thomson
  • van der Waals
  • Waterston
Diğer
  • Çekirdeklenme
  • Öztoplanma
  • Özörgütlenme
  • Düzen ve düzensizlik
  • Kategori Kategori
  • g
  • t
  • d
Maxwell ilişkileri arasındaki yolları gösteren akış şemasıdır. P: basınç, T: sıcaklık, V: hacim, S: entropi, α: termal genleşme katsayısı, κ: sıkıştırılabilme, CV: sabit hacimdeki ısı kapasitesi, CP: sabit basınçta ki ısı kapasitesi .

Maxwell ilişkileri İkinci dereceden türevlerin simetri ve termodinamik potansiyellerin tanımlarından türetilebilen termodinamik denklemler dizisidir. Bu ilişkiler 19.yüzyıl fizikçisi James Clerk Maxwell tarafından adlandırılmıştır.

Eşitlikler

[değiştir | kaynağı değiştir]

Maxwell ilişkilerinin yapısı, sürekli fonksiyonlar için ikinci türevler arasında olan eşitlik beyanıdır. Doğrudan iki değişkenin bir analitik işlev farklılaştırma sırasının alakasız olduğu (Schwarz teoremi) gerçeğinden yola çıkılmıştır. Maxwell ilişkileri söz konusu olduğunda, işlev termodinamik potansiyel xi ve xj potansiyeli için iki farklı doğal değişkenlerdir:

Schwarz' teoremi (genel)

∂ ∂ x j ( ∂ Φ ∂ x i ) = ∂ ∂ x i ( ∂ Φ ∂ x j ) {\displaystyle {\frac {\partial }{\partial x_{j}}}\left({\frac {\partial \Phi }{\partial x_{i}}}\right)={\frac {\partial }{\partial x_{i}}}\left({\frac {\partial \Phi }{\partial x_{j}}}\right)} {\displaystyle {\frac {\partial }{\partial x_{j}}}\left({\frac {\partial \Phi }{\partial x_{i}}}\right)={\frac {\partial }{\partial x_{i}}}\left({\frac {\partial \Phi }{\partial x_{j}}}\right)}

Burada kısmi türevler, diğer tüm doğal değişkenler sabit tutulduğunda alınır. Her termodinamik potansiyel içinn(n - 1)/2 olası Maxwell ilişkisidir.Burada n o potansiyel için doğal değişkenlerin sayısıdır.

En yaygın dört Maxwell ilişkisi

[değiştir | kaynağı değiştir]

En yaygın olan dört Maxwell ilişkisi termal doğal değişkenine (sıcaklık T veya entropi S 'ye göre dört termodinamik potansiyelin her birinin ikinci türevlerinin eşitlikleridir ve mekanik doğal değişkenleridir (basınç' 'P' 'veya hacim' 'V' '):

Maxwell'in ilişkileri (bilinen adıyla)

+ ( ∂ T ∂ V ) S = − ( ∂ P ∂ S ) V = ∂ 2 U ∂ S ∂ V + ( ∂ T ∂ P ) S = + ( ∂ V ∂ S ) P = ∂ 2 H ∂ S ∂ P + ( ∂ S ∂ V ) T = + ( ∂ P ∂ T ) V = − ∂ 2 F ∂ T ∂ V − ( ∂ S ∂ P ) T = + ( ∂ V ∂ T ) P = ∂ 2 G ∂ T ∂ P {\displaystyle {\begin{aligned}+\left({\frac {\partial T}{\partial V}}\right)_{S}&=&-\left({\frac {\partial P}{\partial S}}\right)_{V}&=&{\frac {\partial ^{2}U}{\partial S\partial V}}\\+\left({\frac {\partial T}{\partial P}}\right)_{S}&=&+\left({\frac {\partial V}{\partial S}}\right)_{P}&=&{\frac {\partial ^{2}H}{\partial S\partial P}}\\+\left({\frac {\partial S}{\partial V}}\right)_{T}&=&+\left({\frac {\partial P}{\partial T}}\right)_{V}&=&-{\frac {\partial ^{2}F}{\partial T\partial V}}\\-\left({\frac {\partial S}{\partial P}}\right)_{T}&=&+\left({\frac {\partial V}{\partial T}}\right)_{P}&=&{\frac {\partial ^{2}G}{\partial T\partial P}}\end{aligned}}\,\!} {\displaystyle {\begin{aligned}+\left({\frac {\partial T}{\partial V}}\right)_{S}&=&-\left({\frac {\partial P}{\partial S}}\right)_{V}&=&{\frac {\partial ^{2}U}{\partial S\partial V}}\\+\left({\frac {\partial T}{\partial P}}\right)_{S}&=&+\left({\frac {\partial V}{\partial S}}\right)_{P}&=&{\frac {\partial ^{2}H}{\partial S\partial P}}\\+\left({\frac {\partial S}{\partial V}}\right)_{T}&=&+\left({\frac {\partial P}{\partial T}}\right)_{V}&=&-{\frac {\partial ^{2}F}{\partial T\partial V}}\\-\left({\frac {\partial S}{\partial P}}\right)_{T}&=&+\left({\frac {\partial V}{\partial T}}\right)_{P}&=&{\frac {\partial ^{2}G}{\partial T\partial P}}\end{aligned}}\,\!}

Doğal termal ve mekanik değişkenlerinin fonksiyonları olarak potansiyellerin iç enerji U ( S, V ), entalpi H ( S, P , Helmholtz serbest enerjisi F ( T, V ) ve Gibbs serbest enerjisi G ( T, P ). Termodinamik kare bu ilişkileri türetmek için bir anımsatıcı olarak kullanılabilir. Bu ilişkilerin yararlılığı, sıcaklık, hacim ve basınç gibi ölçülebilir miktarlar açısından doğrudan ölçülebilen entropi değişikliklerini nicelikselleştirmeden kaynaklıdır.

Genel Maxwell ilişkileri

[değiştir | kaynağı değiştir]

Yukarıdakiler sadece Maxwell ilişkileri değildir. Hacim çalışmalarının yanı sıra diğer doğal değişkenleri de içeren diğer çalışma koşulları düşünüldüğünde veya parçacıkların sayısı doğal bir değişken olarak dahil edildiğinde, diğer Maxwell ilişkileri belirginleşir. Örneğin, tek elementli bir gazımız varsa, partiküllerin sayısı N ise, aynı zamanda yukarıdaki dört termodinamik potansiyelin doğal bir değişkendir. Basınca ve partikül sayısına göre entalpi için Maxwell ilişkisi şöyledir:

( ∂ μ ∂ P ) S , N = ( ∂ V ∂ N ) S , P = ∂ 2 H ∂ P ∂ N {\displaystyle \left({\frac {\partial \mu }{\partial P}}\right)_{S,N}=\left({\frac {\partial V}{\partial N}}\right)_{S,P}\qquad ={\frac {\partial ^{2}H}{\partial P\partial N}}} {\displaystyle \left({\frac {\partial \mu }{\partial P}}\right)_{S,N}=\left({\frac {\partial V}{\partial N}}\right)_{S,P}\qquad ={\frac {\partial ^{2}H}{\partial P\partial N}}}

Burada μ μ kimyasal potansiyeldir. Buna ek olarak, yaygın olarak kullanılan dört yanında başka termodinamik potansiyeller de vardır ve bu potansiyellerin her biri bir Maxwell ilişkileri seti verecektir.

Her denklem, ilişki kullanılarak yeniden ifade edilebilir

( ∂ y ∂ x ) z = 1 / ( ∂ x ∂ y ) z {\displaystyle \left({\frac {\partial y}{\partial x}}\right)_{z}=1\left/\left({\frac {\partial x}{\partial y}}\right)_{z}\right.} {\displaystyle \left({\frac {\partial y}{\partial x}}\right)_{z}=1\left/\left({\frac {\partial x}{\partial y}}\right)_{z}\right.}

Bunlar bazen Maxwell ilişkileri olarak da bilinir.

"https://tr.wikipedia.org/w/index.php?title=Maxwell_ilişkileri&oldid=32777391" sayfasından alınmıştır
Kategori:
  • James Clerk Maxwell
Gizli kategori:
  • Kaynakları olmayan maddeler Eylül 2022
  • Sayfa en son 18.35, 14 Mayıs 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Maxwell ilişkileri
Konu ekle