Küresel harmoniklerin tablosu - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Küresel harmonikler
    • 1.1 l = 0[1]
    • 1.2 l = 1[1]
    • 1.3 l = 2[1]
    • 1.4 l = 3[1]
    • 1.5 l = 4[1]
    • 1.6 l = 5[1]
    • 1.7 l = 6
    • 1.8 l = 7
    • 1.9 l = 8
    • 1.10 l = 9
    • 1.11 l = 10
  • 2 Gerçek küresel harmonikler
    • 2.1 l = 0[2][3]
    • 2.2 l = 1[2][3]
    • 2.3 l = 2[2][3]
    • 2.4 l = 3[2]
    • 2.5 l = 4
  • 3 Ayrıca bakınız
  • 4 Dış bağlantılar
  • 5 Kaynakça

Küresel harmoniklerin tablosu

  • Čeština
  • English
  • Español
  • İtaliano
  • 日本語
  • Nederlands
  • Română
  • Русский
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bu madde, Vikipedi biçem el kitabına uygun değildir. Maddeyi, Vikipedi standartlarına uygun biçimde düzenleyerek Vikipedi'ye katkıda bulunabilirsiniz. Gerekli düzenleme yapılmadan bu şablon kaldırılmamalıdır. (Aralık 2019)

Bu bir Küresel harmonikler ortonormalize tablosudur ve Bu Condon-Shortley fazı l = 10 dereceye kadar sağlanır. Bazen bu formüllerin "Kartezyen" yorumu verilir. Bu varsayım x, y, z ve r Kartezyen-e-küresel koordinat dönüşümü yoluyla θ {\displaystyle \theta } {\displaystyle \theta } ve φ {\displaystyle \varphi \,} {\displaystyle \varphi \,} ye ilişkindir:

x = r sin ⁡ θ cos ⁡ φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ θ {\displaystyle {\begin{aligned}x&=r\sin \theta \cos \varphi \\y&=r\sin \theta \sin \varphi \\z&=r\cos \theta \end{aligned}}} {\displaystyle {\begin{aligned}x&=r\sin \theta \cos \varphi \\y&=r\sin \theta \sin \varphi \\z&=r\cos \theta \end{aligned}}}

Küresel harmonikler

[değiştir | kaynağı değiştir]

Burada dikkat çekmesi gereken nokta iki değişkenli fonksiyonların bir yüzeye karşılık geldiğidir. Yani bu harmonikler küre içinde farklı farklı yüzeylerin dalgalanmaları olacaktır

l = 0[1]

[değiştir | kaynağı değiştir]
Y 0 0 ( θ , φ ) = 1 2 1 π {\displaystyle Y_{0}^{0}(\theta ,\varphi )={1 \over 2}{\sqrt {1 \over \pi }}} {\displaystyle Y_{0}^{0}(\theta ,\varphi )={1 \over 2}{\sqrt {1 \over \pi }}}

l = 1[1]

[değiştir | kaynağı değiştir]
Y 1 − 1 ( θ , φ ) = 1 2 3 2 π ⋅ e − i φ ⋅ sin ⁡ θ = 1 2 3 2 π ⋅ ( x − i y ) r Y 1 0 ( θ , φ ) = 1 2 3 π ⋅ cos ⁡ θ = 1 2 3 π ⋅ z r Y 1 1 ( θ , φ ) = − 1 2 3 2 π ⋅ e i φ ⋅ sin ⁡ θ = − 1 2 3 2 π ⋅ ( x + i y ) r {\displaystyle {\begin{aligned}Y_{1}^{-1}(\theta ,\varphi )&={1 \over 2}{\sqrt {3 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \quad ={1 \over 2}{\sqrt {3 \over 2\pi }}\cdot {(x-iy) \over r}\\Y_{1}^{0}(\theta ,\varphi )&={1 \over 2}{\sqrt {3 \over \pi }}\cdot \cos \theta \quad \quad ={1 \over 2}{\sqrt {3 \over \pi }}\cdot {z \over r}\\Y_{1}^{1}(\theta ,\varphi )&={-1 \over 2}{\sqrt {3 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \quad ={-1 \over 2}{\sqrt {3 \over 2\pi }}\cdot {(x+iy) \over r}\end{aligned}}} {\displaystyle {\begin{aligned}Y_{1}^{-1}(\theta ,\varphi )&={1 \over 2}{\sqrt {3 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \quad ={1 \over 2}{\sqrt {3 \over 2\pi }}\cdot {(x-iy) \over r}\\Y_{1}^{0}(\theta ,\varphi )&={1 \over 2}{\sqrt {3 \over \pi }}\cdot \cos \theta \quad \quad ={1 \over 2}{\sqrt {3 \over \pi }}\cdot {z \over r}\\Y_{1}^{1}(\theta ,\varphi )&={-1 \over 2}{\sqrt {3 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \quad ={-1 \over 2}{\sqrt {3 \over 2\pi }}\cdot {(x+iy) \over r}\end{aligned}}}

l = 2[1]

[değiştir | kaynağı değiştir]
Y 2 − 2 ( θ , φ ) = 1 4 15 2 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ = 1 4 15 2 π ⋅ ( x − i y ) 2 r 2 {\displaystyle Y_{2}^{-2}(\theta ,\varphi )={1 \over 4}{\sqrt {15 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \quad ={1 \over 4}{\sqrt {15 \over 2\pi }}\cdot {(x-iy)^{2} \over r^{2}}} {\displaystyle Y_{2}^{-2}(\theta ,\varphi )={1 \over 4}{\sqrt {15 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \quad ={1 \over 4}{\sqrt {15 \over 2\pi }}\cdot {(x-iy)^{2} \over r^{2}}}
Y 2 − 1 ( θ , φ ) = 1 2 15 2 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ cos ⁡ θ = 1 2 15 2 π ⋅ ( x − i y ) z r 2 {\displaystyle Y_{2}^{-1}(\theta ,\varphi )={1 \over 2}{\sqrt {15 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot \cos \theta \quad ={1 \over 2}{\sqrt {15 \over 2\pi }}\cdot {(x-iy)z \over r^{2}}} {\displaystyle Y_{2}^{-1}(\theta ,\varphi )={1 \over 2}{\sqrt {15 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot \cos \theta \quad ={1 \over 2}{\sqrt {15 \over 2\pi }}\cdot {(x-iy)z \over r^{2}}}
Y 2 0 ( θ , φ ) = 1 4 5 π ⋅ ( 3 cos 2 ⁡ θ − 1 ) = 1 4 5 π ⋅ ( 2 z 2 − x 2 − y 2 ) r 2 {\displaystyle Y_{2}^{0}(\theta ,\varphi )={1 \over 4}{\sqrt {5 \over \pi }}\cdot (3\cos ^{2}\theta -1)\quad ={1 \over 4}{\sqrt {5 \over \pi }}\cdot {(2z^{2}-x^{2}-y^{2}) \over r^{2}}} {\displaystyle Y_{2}^{0}(\theta ,\varphi )={1 \over 4}{\sqrt {5 \over \pi }}\cdot (3\cos ^{2}\theta -1)\quad ={1 \over 4}{\sqrt {5 \over \pi }}\cdot {(2z^{2}-x^{2}-y^{2}) \over r^{2}}}
Y 2 1 ( θ , φ ) = − 1 2 15 2 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ cos ⁡ θ = − 1 2 15 2 π ⋅ ( x + i y ) z r 2 {\displaystyle Y_{2}^{1}(\theta ,\varphi )={-1 \over 2}{\sqrt {15 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot \cos \theta \quad ={-1 \over 2}{\sqrt {15 \over 2\pi }}\cdot {(x+iy)z \over r^{2}}} {\displaystyle Y_{2}^{1}(\theta ,\varphi )={-1 \over 2}{\sqrt {15 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot \cos \theta \quad ={-1 \over 2}{\sqrt {15 \over 2\pi }}\cdot {(x+iy)z \over r^{2}}}
Y 2 2 ( θ , φ ) = 1 4 15 2 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ = 1 4 15 2 π ⋅ ( x + i y ) 2 r 2 {\displaystyle Y_{2}^{2}(\theta ,\varphi )={1 \over 4}{\sqrt {15 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \quad ={1 \over 4}{\sqrt {15 \over 2\pi }}\cdot {(x+iy)^{2} \over r^{2}}} {\displaystyle Y_{2}^{2}(\theta ,\varphi )={1 \over 4}{\sqrt {15 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \quad ={1 \over 4}{\sqrt {15 \over 2\pi }}\cdot {(x+iy)^{2} \over r^{2}}}

l = 3[1]

[değiştir | kaynağı değiştir]
Y 3 − 3 ( θ , φ ) = 1 8 35 π ⋅ e − 3 i φ ⋅ sin 3 ⁡ θ = 1 8 35 π ⋅ ( x − i y ) 3 r 3 {\displaystyle Y_{3}^{-3}(\theta ,\varphi )={1 \over 8}{\sqrt {35 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \quad ={1 \over 8}{\sqrt {35 \over \pi }}\cdot {(x-iy)^{3} \over r^{3}}} {\displaystyle Y_{3}^{-3}(\theta ,\varphi )={1 \over 8}{\sqrt {35 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \quad ={1 \over 8}{\sqrt {35 \over \pi }}\cdot {(x-iy)^{3} \over r^{3}}}
Y 3 − 2 ( θ , φ ) = 1 4 105 2 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ ⋅ cos ⁡ θ = 1 4 105 2 π ⋅ ( x − i y ) 2 z r 3 {\displaystyle Y_{3}^{-2}(\theta ,\varphi )={1 \over 4}{\sqrt {105 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot \cos \theta \quad ={1 \over 4}{\sqrt {105 \over 2\pi }}\cdot {(x-iy)^{2}z \over r^{3}}} {\displaystyle Y_{3}^{-2}(\theta ,\varphi )={1 \over 4}{\sqrt {105 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot \cos \theta \quad ={1 \over 4}{\sqrt {105 \over 2\pi }}\cdot {(x-iy)^{2}z \over r^{3}}}
Y 3 − 1 ( θ , φ ) = 1 8 21 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ ( 5 cos 2 ⁡ θ − 1 ) = 1 8 21 π ⋅ ( x − i y ) ( 4 z 2 − x 2 − y 2 ) r 3 {\displaystyle Y_{3}^{-1}(\theta ,\varphi )={1 \over 8}{\sqrt {21 \over \pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (5\cos ^{2}\theta -1)\quad ={1 \over 8}{\sqrt {21 \over \pi }}\cdot {(x-iy)(4z^{2}-x^{2}-y^{2}) \over r^{3}}} {\displaystyle Y_{3}^{-1}(\theta ,\varphi )={1 \over 8}{\sqrt {21 \over \pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (5\cos ^{2}\theta -1)\quad ={1 \over 8}{\sqrt {21 \over \pi }}\cdot {(x-iy)(4z^{2}-x^{2}-y^{2}) \over r^{3}}}
Y 3 0 ( θ , φ ) = 1 4 7 π ⋅ ( 5 cos 3 ⁡ θ − 3 cos ⁡ θ ) = 1 4 7 π ⋅ z ( 2 z 2 − 3 x 2 − 3 y 2 ) r 3 {\displaystyle Y_{3}^{0}(\theta ,\varphi )={1 \over 4}{\sqrt {7 \over \pi }}\cdot (5\cos ^{3}\theta -3\cos \theta )\quad ={1 \over 4}{\sqrt {7 \over \pi }}\cdot {z(2z^{2}-3x^{2}-3y^{2}) \over r^{3}}} {\displaystyle Y_{3}^{0}(\theta ,\varphi )={1 \over 4}{\sqrt {7 \over \pi }}\cdot (5\cos ^{3}\theta -3\cos \theta )\quad ={1 \over 4}{\sqrt {7 \over \pi }}\cdot {z(2z^{2}-3x^{2}-3y^{2}) \over r^{3}}}
Y 3 1 ( θ , φ ) = − 1 8 21 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ ( 5 cos 2 ⁡ θ − 1 ) = − 1 8 21 π ⋅ ( x + i y ) ( 4 z 2 − x 2 − y 2 ) r 3 {\displaystyle Y_{3}^{1}(\theta ,\varphi )={-1 \over 8}{\sqrt {21 \over \pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (5\cos ^{2}\theta -1)\quad ={-1 \over 8}{\sqrt {21 \over \pi }}\cdot {(x+iy)(4z^{2}-x^{2}-y^{2}) \over r^{3}}} {\displaystyle Y_{3}^{1}(\theta ,\varphi )={-1 \over 8}{\sqrt {21 \over \pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (5\cos ^{2}\theta -1)\quad ={-1 \over 8}{\sqrt {21 \over \pi }}\cdot {(x+iy)(4z^{2}-x^{2}-y^{2}) \over r^{3}}}
Y 3 2 ( θ , φ ) = 1 4 105 2 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ ⋅ cos ⁡ θ = 1 4 105 2 π ⋅ ( x + i y ) 2 z r 3 {\displaystyle Y_{3}^{2}(\theta ,\varphi )={1 \over 4}{\sqrt {105 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot \cos \theta \quad ={1 \over 4}{\sqrt {105 \over 2\pi }}\cdot {(x+iy)^{2}z \over r^{3}}} {\displaystyle Y_{3}^{2}(\theta ,\varphi )={1 \over 4}{\sqrt {105 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot \cos \theta \quad ={1 \over 4}{\sqrt {105 \over 2\pi }}\cdot {(x+iy)^{2}z \over r^{3}}}
Y 3 3 ( θ , φ ) = − 1 8 35 π ⋅ e 3 i φ ⋅ sin 3 ⁡ θ = − 1 8 35 π ⋅ ( x + i y ) 3 r 3 {\displaystyle Y_{3}^{3}(\theta ,\varphi )={-1 \over 8}{\sqrt {35 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \quad ={-1 \over 8}{\sqrt {35 \over \pi }}\cdot {(x+iy)^{3} \over r^{3}}} {\displaystyle Y_{3}^{3}(\theta ,\varphi )={-1 \over 8}{\sqrt {35 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \quad ={-1 \over 8}{\sqrt {35 \over \pi }}\cdot {(x+iy)^{3} \over r^{3}}}

l = 4[1]

[değiştir | kaynağı değiştir]
Y 4 − 4 ( θ , φ ) = 3 16 35 2 π ⋅ e − 4 i φ ⋅ sin 4 ⁡ θ = 3 16 35 2 π ⋅ ( x − i y ) 4 r 4 {\displaystyle Y_{4}^{-4}(\theta ,\varphi )={3 \over 16}{\sqrt {35 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta ={\frac {3}{16}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(x-iy)^{4}}{r^{4}}}} {\displaystyle Y_{4}^{-4}(\theta ,\varphi )={3 \over 16}{\sqrt {35 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta ={\frac {3}{16}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(x-iy)^{4}}{r^{4}}}}
Y 4 − 3 ( θ , φ ) = 3 8 35 π ⋅ e − 3 i φ ⋅ sin 3 ⁡ θ ⋅ cos ⁡ θ = 3 8 35 π ⋅ ( x − i y ) 3 z r 4 {\displaystyle Y_{4}^{-3}(\theta ,\varphi )={3 \over 8}{\sqrt {35 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot \cos \theta ={\frac {3}{8}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {(x-iy)^{3}z}{r^{4}}}} {\displaystyle Y_{4}^{-3}(\theta ,\varphi )={3 \over 8}{\sqrt {35 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot \cos \theta ={\frac {3}{8}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {(x-iy)^{3}z}{r^{4}}}}
Y 4 − 2 ( θ , φ ) = 3 8 5 2 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 7 cos 2 ⁡ θ − 1 ) = 3 8 5 2 π ⋅ ( x − i y ) 2 ⋅ ( 7 z 2 − r 2 ) r 4 {\displaystyle Y_{4}^{-2}(\theta ,\varphi )={3 \over 8}{\sqrt {5 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (7\cos ^{2}\theta -1)={\frac {3}{8}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {(x-iy)^{2}\cdot (7z^{2}-r^{2})}{r^{4}}}} {\displaystyle Y_{4}^{-2}(\theta ,\varphi )={3 \over 8}{\sqrt {5 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (7\cos ^{2}\theta -1)={\frac {3}{8}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {(x-iy)^{2}\cdot (7z^{2}-r^{2})}{r^{4}}}}
Y 4 − 1 ( θ , φ ) = 3 8 5 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ ( 7 cos 3 ⁡ θ − 3 cos ⁡ θ ) = 3 8 5 π ⋅ ( x − i y ) ⋅ z ⋅ ( 7 z 2 − 3 r 2 ) r 4 {\displaystyle Y_{4}^{-1}(\theta ,\varphi )={3 \over 8}{\sqrt {5 \over \pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (7\cos ^{3}\theta -3\cos \theta )={\frac {3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x-iy)\cdot z\cdot (7z^{2}-3r^{2})}{r^{4}}}} {\displaystyle Y_{4}^{-1}(\theta ,\varphi )={3 \over 8}{\sqrt {5 \over \pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (7\cos ^{3}\theta -3\cos \theta )={\frac {3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x-iy)\cdot z\cdot (7z^{2}-3r^{2})}{r^{4}}}}
Y 4 0 ( θ , φ ) = 3 16 1 π ⋅ ( 35 cos 4 ⁡ θ − 30 cos 2 ⁡ θ + 3 ) = 3 16 1 π ⋅ ( 35 z 4 − 30 z 2 r 2 + 3 r 4 ) r 4 {\displaystyle Y_{4}^{0}(\theta ,\varphi )={3 \over 16}{\sqrt {1 \over \pi }}\cdot (35\cos ^{4}\theta -30\cos ^{2}\theta +3)={\frac {3}{16}}{\sqrt {\frac {1}{\pi }}}\cdot {\frac {(35z^{4}-30z^{2}r^{2}+3r^{4})}{r^{4}}}} {\displaystyle Y_{4}^{0}(\theta ,\varphi )={3 \over 16}{\sqrt {1 \over \pi }}\cdot (35\cos ^{4}\theta -30\cos ^{2}\theta +3)={\frac {3}{16}}{\sqrt {\frac {1}{\pi }}}\cdot {\frac {(35z^{4}-30z^{2}r^{2}+3r^{4})}{r^{4}}}}
Y 4 1 ( θ , φ ) = − 3 8 5 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ ( 7 cos 3 ⁡ θ − 3 cos ⁡ θ ) = − 3 8 5 π ⋅ ( x + i y ) ⋅ z ⋅ ( 7 z 2 − 3 r 2 ) r 4 {\displaystyle Y_{4}^{1}(\theta ,\varphi )={-3 \over 8}{\sqrt {5 \over \pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (7\cos ^{3}\theta -3\cos \theta )={\frac {-3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x+iy)\cdot z\cdot (7z^{2}-3r^{2})}{r^{4}}}} {\displaystyle Y_{4}^{1}(\theta ,\varphi )={-3 \over 8}{\sqrt {5 \over \pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (7\cos ^{3}\theta -3\cos \theta )={\frac {-3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x+iy)\cdot z\cdot (7z^{2}-3r^{2})}{r^{4}}}}
Y 4 2 ( θ , φ ) = 3 8 5 2 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 7 cos 2 ⁡ θ − 1 ) = 3 8 5 2 π ⋅ ( x + i y ) 2 ⋅ ( 7 z 2 − r 2 ) r 4 {\displaystyle Y_{4}^{2}(\theta ,\varphi )={3 \over 8}{\sqrt {5 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (7\cos ^{2}\theta -1)={\frac {3}{8}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {(x+iy)^{2}\cdot (7z^{2}-r^{2})}{r^{4}}}} {\displaystyle Y_{4}^{2}(\theta ,\varphi )={3 \over 8}{\sqrt {5 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (7\cos ^{2}\theta -1)={\frac {3}{8}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {(x+iy)^{2}\cdot (7z^{2}-r^{2})}{r^{4}}}}
Y 4 3 ( θ , φ ) = − 3 8 35 π ⋅ e 3 i φ ⋅ sin 3 ⁡ θ ⋅ cos ⁡ θ = − 3 8 35 π ⋅ ( x + i y ) 3 z r 4 {\displaystyle Y_{4}^{3}(\theta ,\varphi )={-3 \over 8}{\sqrt {35 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot \cos \theta ={\frac {-3}{8}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {(x+iy)^{3}z}{r^{4}}}} {\displaystyle Y_{4}^{3}(\theta ,\varphi )={-3 \over 8}{\sqrt {35 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot \cos \theta ={\frac {-3}{8}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {(x+iy)^{3}z}{r^{4}}}}
Y 4 4 ( θ , φ ) = 3 16 35 2 π ⋅ e 4 i φ ⋅ sin 4 ⁡ θ = 3 16 35 2 π ⋅ ( x + i y ) 4 r 4 {\displaystyle Y_{4}^{4}(\theta ,\varphi )={3 \over 16}{\sqrt {35 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta ={\frac {3}{16}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(x+iy)^{4}}{r^{4}}}} {\displaystyle Y_{4}^{4}(\theta ,\varphi )={3 \over 16}{\sqrt {35 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta ={\frac {3}{16}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(x+iy)^{4}}{r^{4}}}}

l = 5[1]

[değiştir | kaynağı değiştir]
Y 5 − 5 ( θ , φ ) = 3 32 77 π ⋅ e − 5 i φ ⋅ sin 5 ⁡ θ {\displaystyle Y_{5}^{-5}(\theta ,\varphi )={3 \over 32}{\sqrt {77 \over \pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta } {\displaystyle Y_{5}^{-5}(\theta ,\varphi )={3 \over 32}{\sqrt {77 \over \pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta }
Y 5 − 4 ( θ , φ ) = 3 16 385 2 π ⋅ e − 4 i φ ⋅ sin 4 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{5}^{-4}(\theta ,\varphi )={3 \over 16}{\sqrt {385 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot \cos \theta } {\displaystyle Y_{5}^{-4}(\theta ,\varphi )={3 \over 16}{\sqrt {385 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot \cos \theta }
Y 5 − 3 ( θ , φ ) = 1 32 385 π ⋅ e − 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 9 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{5}^{-3}(\theta ,\varphi )={1 \over 32}{\sqrt {385 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (9\cos ^{2}\theta -1)} {\displaystyle Y_{5}^{-3}(\theta ,\varphi )={1 \over 32}{\sqrt {385 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (9\cos ^{2}\theta -1)}
Y 5 − 2 ( θ , φ ) = 1 8 1155 2 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 3 cos 3 ⁡ θ − cos ⁡ θ ) {\displaystyle Y_{5}^{-2}(\theta ,\varphi )={1 \over 8}{\sqrt {1155 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (3\cos ^{3}\theta -\cos \theta )} {\displaystyle Y_{5}^{-2}(\theta ,\varphi )={1 \over 8}{\sqrt {1155 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (3\cos ^{3}\theta -\cos \theta )}
Y 5 − 1 ( θ , φ ) = 1 16 165 2 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ ( 21 cos 4 ⁡ θ − 14 cos 2 ⁡ θ + 1 ) {\displaystyle Y_{5}^{-1}(\theta ,\varphi )={1 \over 16}{\sqrt {165 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (21\cos ^{4}\theta -14\cos ^{2}\theta +1)} {\displaystyle Y_{5}^{-1}(\theta ,\varphi )={1 \over 16}{\sqrt {165 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (21\cos ^{4}\theta -14\cos ^{2}\theta +1)}
Y 5 0 ( θ , φ ) = 1 16 11 π ⋅ ( 63 cos 5 ⁡ θ − 70 cos 3 ⁡ θ + 15 cos ⁡ θ ) {\displaystyle Y_{5}^{0}(\theta ,\varphi )={1 \over 16}{\sqrt {11 \over \pi }}\cdot (63\cos ^{5}\theta -70\cos ^{3}\theta +15\cos \theta )} {\displaystyle Y_{5}^{0}(\theta ,\varphi )={1 \over 16}{\sqrt {11 \over \pi }}\cdot (63\cos ^{5}\theta -70\cos ^{3}\theta +15\cos \theta )}
Y 5 1 ( θ , φ ) = − 1 16 165 2 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ ( 21 cos 4 ⁡ θ − 14 cos 2 ⁡ θ + 1 ) {\displaystyle Y_{5}^{1}(\theta ,\varphi )={-1 \over 16}{\sqrt {165 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (21\cos ^{4}\theta -14\cos ^{2}\theta +1)} {\displaystyle Y_{5}^{1}(\theta ,\varphi )={-1 \over 16}{\sqrt {165 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (21\cos ^{4}\theta -14\cos ^{2}\theta +1)}
Y 5 2 ( θ , φ ) = 1 8 1155 2 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 3 cos 3 ⁡ θ − cos ⁡ θ ) {\displaystyle Y_{5}^{2}(\theta ,\varphi )={1 \over 8}{\sqrt {1155 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (3\cos ^{3}\theta -\cos \theta )} {\displaystyle Y_{5}^{2}(\theta ,\varphi )={1 \over 8}{\sqrt {1155 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (3\cos ^{3}\theta -\cos \theta )}
Y 5 3 ( θ , φ ) = − 1 32 385 π ⋅ e 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 9 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{5}^{3}(\theta ,\varphi )={-1 \over 32}{\sqrt {385 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (9\cos ^{2}\theta -1)} {\displaystyle Y_{5}^{3}(\theta ,\varphi )={-1 \over 32}{\sqrt {385 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (9\cos ^{2}\theta -1)}
Y 5 4 ( θ , φ ) = 3 16 385 2 π ⋅ e 4 i φ ⋅ sin 4 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{5}^{4}(\theta ,\varphi )={3 \over 16}{\sqrt {385 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot \cos \theta } {\displaystyle Y_{5}^{4}(\theta ,\varphi )={3 \over 16}{\sqrt {385 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot \cos \theta }
Y 5 5 ( θ , φ ) = − 3 32 77 π ⋅ e 5 i φ ⋅ sin 5 ⁡ θ {\displaystyle Y_{5}^{5}(\theta ,\varphi )={-3 \over 32}{\sqrt {77 \over \pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta } {\displaystyle Y_{5}^{5}(\theta ,\varphi )={-3 \over 32}{\sqrt {77 \over \pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta }

l = 6

[değiştir | kaynağı değiştir]
Y 6 − 6 ( θ , φ ) = 1 64 3003 π ⋅ e − 6 i φ ⋅ sin 6 ⁡ θ {\displaystyle Y_{6}^{-6}(\theta ,\varphi )={1 \over 64}{\sqrt {3003 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta } {\displaystyle Y_{6}^{-6}(\theta ,\varphi )={1 \over 64}{\sqrt {3003 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta }
Y 6 − 5 ( θ , φ ) = 3 32 1001 π ⋅ e − 5 i φ ⋅ sin 5 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{6}^{-5}(\theta ,\varphi )={3 \over 32}{\sqrt {1001 \over \pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot \cos \theta } {\displaystyle Y_{6}^{-5}(\theta ,\varphi )={3 \over 32}{\sqrt {1001 \over \pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot \cos \theta }
Y 6 − 4 ( θ , φ ) = 3 32 91 2 π ⋅ e − 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 11 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{6}^{-4}(\theta ,\varphi )={3 \over 32}{\sqrt {91 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (11\cos ^{2}\theta -1)} {\displaystyle Y_{6}^{-4}(\theta ,\varphi )={3 \over 32}{\sqrt {91 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (11\cos ^{2}\theta -1)}
Y 6 − 3 ( θ , φ ) = 1 32 1365 π ⋅ e − 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 11 cos 3 ⁡ θ − 3 cos ⁡ θ ) {\displaystyle Y_{6}^{-3}(\theta ,\varphi )={1 \over 32}{\sqrt {1365 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (11\cos ^{3}\theta -3\cos \theta )} {\displaystyle Y_{6}^{-3}(\theta ,\varphi )={1 \over 32}{\sqrt {1365 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (11\cos ^{3}\theta -3\cos \theta )}
Y 6 − 2 ( θ , φ ) = 1 64 1365 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 33 cos 4 ⁡ θ − 18 cos 2 ⁡ θ + 1 ) {\displaystyle Y_{6}^{-2}(\theta ,\varphi )={1 \over 64}{\sqrt {1365 \over \pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (33\cos ^{4}\theta -18\cos ^{2}\theta +1)} {\displaystyle Y_{6}^{-2}(\theta ,\varphi )={1 \over 64}{\sqrt {1365 \over \pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (33\cos ^{4}\theta -18\cos ^{2}\theta +1)}
Y 6 − 1 ( θ , φ ) = 1 16 273 2 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ ( 33 cos 5 ⁡ θ − 30 cos 3 ⁡ θ + 5 cos ⁡ θ ) {\displaystyle Y_{6}^{-1}(\theta ,\varphi )={1 \over 16}{\sqrt {273 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (33\cos ^{5}\theta -30\cos ^{3}\theta +5\cos \theta )} {\displaystyle Y_{6}^{-1}(\theta ,\varphi )={1 \over 16}{\sqrt {273 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (33\cos ^{5}\theta -30\cos ^{3}\theta +5\cos \theta )}
Y 6 0 ( θ , φ ) = 1 32 13 π ⋅ ( 231 cos 6 ⁡ θ − 315 cos 4 ⁡ θ + 105 cos 2 ⁡ θ − 5 ) {\displaystyle Y_{6}^{0}(\theta ,\varphi )={1 \over 32}{\sqrt {13 \over \pi }}\cdot (231\cos ^{6}\theta -315\cos ^{4}\theta +105\cos ^{2}\theta -5)} {\displaystyle Y_{6}^{0}(\theta ,\varphi )={1 \over 32}{\sqrt {13 \over \pi }}\cdot (231\cos ^{6}\theta -315\cos ^{4}\theta +105\cos ^{2}\theta -5)}
Y 6 1 ( θ , φ ) = − 1 16 273 2 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ ( 33 cos 5 ⁡ θ − 30 cos 3 ⁡ θ + 5 cos ⁡ θ ) {\displaystyle Y_{6}^{1}(\theta ,\varphi )={-1 \over 16}{\sqrt {273 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (33\cos ^{5}\theta -30\cos ^{3}\theta +5\cos \theta )} {\displaystyle Y_{6}^{1}(\theta ,\varphi )={-1 \over 16}{\sqrt {273 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (33\cos ^{5}\theta -30\cos ^{3}\theta +5\cos \theta )}
Y 6 2 ( θ , φ ) = 1 64 1365 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 33 cos 4 ⁡ θ − 18 cos 2 ⁡ θ + 1 ) {\displaystyle Y_{6}^{2}(\theta ,\varphi )={1 \over 64}{\sqrt {1365 \over \pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (33\cos ^{4}\theta -18\cos ^{2}\theta +1)} {\displaystyle Y_{6}^{2}(\theta ,\varphi )={1 \over 64}{\sqrt {1365 \over \pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (33\cos ^{4}\theta -18\cos ^{2}\theta +1)}
Y 6 3 ( θ , φ ) = − 1 32 1365 π ⋅ e 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 11 cos 3 ⁡ θ − 3 cos ⁡ θ ) {\displaystyle Y_{6}^{3}(\theta ,\varphi )={-1 \over 32}{\sqrt {1365 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (11\cos ^{3}\theta -3\cos \theta )} {\displaystyle Y_{6}^{3}(\theta ,\varphi )={-1 \over 32}{\sqrt {1365 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (11\cos ^{3}\theta -3\cos \theta )}
Y 6 4 ( θ , φ ) = 3 32 91 2 π ⋅ e 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 11 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{6}^{4}(\theta ,\varphi )={3 \over 32}{\sqrt {91 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (11\cos ^{2}\theta -1)} {\displaystyle Y_{6}^{4}(\theta ,\varphi )={3 \over 32}{\sqrt {91 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (11\cos ^{2}\theta -1)}
Y 6 5 ( θ , φ ) = − 3 32 1001 π ⋅ e 5 i φ ⋅ sin 5 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{6}^{5}(\theta ,\varphi )={-3 \over 32}{\sqrt {1001 \over \pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot \cos \theta } {\displaystyle Y_{6}^{5}(\theta ,\varphi )={-3 \over 32}{\sqrt {1001 \over \pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot \cos \theta }
Y 6 6 ( θ , φ ) = 1 64 3003 π ⋅ e 6 i φ ⋅ sin 6 ⁡ θ {\displaystyle Y_{6}^{6}(\theta ,\varphi )={1 \over 64}{\sqrt {3003 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta } {\displaystyle Y_{6}^{6}(\theta ,\varphi )={1 \over 64}{\sqrt {3003 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta }

l = 7

[değiştir | kaynağı değiştir]
Y 7 − 7 ( θ , φ ) = 3 64 715 2 π ⋅ e − 7 i φ ⋅ sin 7 ⁡ θ {\displaystyle Y_{7}^{-7}(\theta ,\varphi )={3 \over 64}{\sqrt {715 \over 2\pi }}\cdot e^{-7i\varphi }\cdot \sin ^{7}\theta } {\displaystyle Y_{7}^{-7}(\theta ,\varphi )={3 \over 64}{\sqrt {715 \over 2\pi }}\cdot e^{-7i\varphi }\cdot \sin ^{7}\theta }
Y 7 − 6 ( θ , φ ) = 3 64 5005 π ⋅ e − 6 i φ ⋅ sin 6 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{7}^{-6}(\theta ,\varphi )={3 \over 64}{\sqrt {5005 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta \cdot \cos \theta } {\displaystyle Y_{7}^{-6}(\theta ,\varphi )={3 \over 64}{\sqrt {5005 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta \cdot \cos \theta }
Y 7 − 5 ( θ , φ ) = 3 64 385 2 π ⋅ e − 5 i φ ⋅ sin 5 ⁡ θ ⋅ ( 13 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{7}^{-5}(\theta ,\varphi )={3 \over 64}{\sqrt {385 \over 2\pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (13\cos ^{2}\theta -1)} {\displaystyle Y_{7}^{-5}(\theta ,\varphi )={3 \over 64}{\sqrt {385 \over 2\pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (13\cos ^{2}\theta -1)}
Y 7 − 4 ( θ , φ ) = 3 32 385 2 π ⋅ e − 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 13 cos 3 ⁡ θ − 3 cos ⁡ θ ) {\displaystyle Y_{7}^{-4}(\theta ,\varphi )={3 \over 32}{\sqrt {385 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (13\cos ^{3}\theta -3\cos \theta )} {\displaystyle Y_{7}^{-4}(\theta ,\varphi )={3 \over 32}{\sqrt {385 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (13\cos ^{3}\theta -3\cos \theta )}
Y 7 − 3 ( θ , φ ) = 3 64 35 2 π ⋅ e − 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 143 cos 4 ⁡ θ − 66 cos 2 ⁡ θ + 3 ) {\displaystyle Y_{7}^{-3}(\theta ,\varphi )={3 \over 64}{\sqrt {35 \over 2\pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (143\cos ^{4}\theta -66\cos ^{2}\theta +3)} {\displaystyle Y_{7}^{-3}(\theta ,\varphi )={3 \over 64}{\sqrt {35 \over 2\pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (143\cos ^{4}\theta -66\cos ^{2}\theta +3)}
Y 7 − 2 ( θ , φ ) = 3 64 35 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 143 cos 5 ⁡ θ − 110 cos 3 ⁡ θ + 15 cos ⁡ θ ) {\displaystyle Y_{7}^{-2}(\theta ,\varphi )={3 \over 64}{\sqrt {35 \over \pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{5}\theta -110\cos ^{3}\theta +15\cos \theta )} {\displaystyle Y_{7}^{-2}(\theta ,\varphi )={3 \over 64}{\sqrt {35 \over \pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{5}\theta -110\cos ^{3}\theta +15\cos \theta )}
Y 7 − 1 ( θ , φ ) = 1 64 105 2 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ ( 429 cos 6 ⁡ θ − 495 cos 4 ⁡ θ + 135 cos 2 ⁡ θ − 5 ) {\displaystyle Y_{7}^{-1}(\theta ,\varphi )={1 \over 64}{\sqrt {105 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (429\cos ^{6}\theta -495\cos ^{4}\theta +135\cos ^{2}\theta -5)} {\displaystyle Y_{7}^{-1}(\theta ,\varphi )={1 \over 64}{\sqrt {105 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (429\cos ^{6}\theta -495\cos ^{4}\theta +135\cos ^{2}\theta -5)}
Y 7 0 ( θ , φ ) = 1 32 15 π ⋅ ( 429 cos 7 ⁡ θ − 693 cos 5 ⁡ θ + 315 cos 3 ⁡ θ − 35 cos ⁡ θ ) {\displaystyle Y_{7}^{0}(\theta ,\varphi )={1 \over 32}{\sqrt {15 \over \pi }}\cdot (429\cos ^{7}\theta -693\cos ^{5}\theta +315\cos ^{3}\theta -35\cos \theta )} {\displaystyle Y_{7}^{0}(\theta ,\varphi )={1 \over 32}{\sqrt {15 \over \pi }}\cdot (429\cos ^{7}\theta -693\cos ^{5}\theta +315\cos ^{3}\theta -35\cos \theta )}
Y 7 1 ( θ , φ ) = − 1 64 105 2 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ ( 429 cos 6 ⁡ θ − 495 cos 4 ⁡ θ + 135 cos 2 ⁡ θ − 5 ) {\displaystyle Y_{7}^{1}(\theta ,\varphi )={-1 \over 64}{\sqrt {105 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (429\cos ^{6}\theta -495\cos ^{4}\theta +135\cos ^{2}\theta -5)} {\displaystyle Y_{7}^{1}(\theta ,\varphi )={-1 \over 64}{\sqrt {105 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (429\cos ^{6}\theta -495\cos ^{4}\theta +135\cos ^{2}\theta -5)}
Y 7 2 ( θ , φ ) = 3 64 35 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 143 cos 5 ⁡ θ − 110 cos 3 ⁡ θ + 15 cos ⁡ θ ) {\displaystyle Y_{7}^{2}(\theta ,\varphi )={3 \over 64}{\sqrt {35 \over \pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{5}\theta -110\cos ^{3}\theta +15\cos \theta )} {\displaystyle Y_{7}^{2}(\theta ,\varphi )={3 \over 64}{\sqrt {35 \over \pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{5}\theta -110\cos ^{3}\theta +15\cos \theta )}
Y 7 3 ( θ , φ ) = − 3 64 35 2 π ⋅ e 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 143 cos 4 ⁡ θ − 66 cos 2 ⁡ θ + 3 ) {\displaystyle Y_{7}^{3}(\theta ,\varphi )={-3 \over 64}{\sqrt {35 \over 2\pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (143\cos ^{4}\theta -66\cos ^{2}\theta +3)} {\displaystyle Y_{7}^{3}(\theta ,\varphi )={-3 \over 64}{\sqrt {35 \over 2\pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (143\cos ^{4}\theta -66\cos ^{2}\theta +3)}
Y 7 4 ( θ , φ ) = 3 32 385 2 π ⋅ e 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 13 cos 3 ⁡ θ − 3 cos ⁡ θ ) {\displaystyle Y_{7}^{4}(\theta ,\varphi )={3 \over 32}{\sqrt {385 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (13\cos ^{3}\theta -3\cos \theta )} {\displaystyle Y_{7}^{4}(\theta ,\varphi )={3 \over 32}{\sqrt {385 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (13\cos ^{3}\theta -3\cos \theta )}
Y 7 5 ( θ , φ ) = − 3 64 385 2 π ⋅ e 5 i φ ⋅ sin 5 ⁡ θ ⋅ ( 13 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{7}^{5}(\theta ,\varphi )={-3 \over 64}{\sqrt {385 \over 2\pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot (13\cos ^{2}\theta -1)} {\displaystyle Y_{7}^{5}(\theta ,\varphi )={-3 \over 64}{\sqrt {385 \over 2\pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot (13\cos ^{2}\theta -1)}
Y 7 6 ( θ , φ ) = 3 64 5005 π ⋅ e 6 i φ ⋅ sin 6 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{7}^{6}(\theta ,\varphi )={3 \over 64}{\sqrt {5005 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta \cdot \cos \theta } {\displaystyle Y_{7}^{6}(\theta ,\varphi )={3 \over 64}{\sqrt {5005 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta \cdot \cos \theta }
Y 7 7 ( θ , φ ) = − 3 64 715 2 π ⋅ e 7 i φ ⋅ sin 7 ⁡ θ {\displaystyle Y_{7}^{7}(\theta ,\varphi )={-3 \over 64}{\sqrt {715 \over 2\pi }}\cdot e^{7i\varphi }\cdot \sin ^{7}\theta } {\displaystyle Y_{7}^{7}(\theta ,\varphi )={-3 \over 64}{\sqrt {715 \over 2\pi }}\cdot e^{7i\varphi }\cdot \sin ^{7}\theta }

l = 8

[değiştir | kaynağı değiştir]
Y 8 − 8 ( θ , φ ) = 3 256 12155 2 π ⋅ e − 8 i φ ⋅ sin 8 ⁡ θ {\displaystyle Y_{8}^{-8}(\theta ,\varphi )={3 \over 256}{\sqrt {12155 \over 2\pi }}\cdot e^{-8i\varphi }\cdot \sin ^{8}\theta } {\displaystyle Y_{8}^{-8}(\theta ,\varphi )={3 \over 256}{\sqrt {12155 \over 2\pi }}\cdot e^{-8i\varphi }\cdot \sin ^{8}\theta }
Y 8 − 7 ( θ , φ ) = 3 64 12155 2 π ⋅ e − 7 i φ ⋅ sin 7 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{8}^{-7}(\theta ,\varphi )={3 \over 64}{\sqrt {12155 \over 2\pi }}\cdot e^{-7i\varphi }\cdot \sin ^{7}\theta \cdot \cos \theta } {\displaystyle Y_{8}^{-7}(\theta ,\varphi )={3 \over 64}{\sqrt {12155 \over 2\pi }}\cdot e^{-7i\varphi }\cdot \sin ^{7}\theta \cdot \cos \theta }
Y 8 − 6 ( θ , φ ) = 1 128 7293 π ⋅ e − 6 i φ ⋅ sin 6 ⁡ θ ⋅ ( 15 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{8}^{-6}(\theta ,\varphi )={1 \over 128}{\sqrt {7293 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (15\cos ^{2}\theta -1)} {\displaystyle Y_{8}^{-6}(\theta ,\varphi )={1 \over 128}{\sqrt {7293 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (15\cos ^{2}\theta -1)}
Y 8 − 5 ( θ , φ ) = 3 64 17017 2 π ⋅ e − 5 i φ ⋅ sin 5 ⁡ θ ⋅ ( 5 cos 3 ⁡ θ − cos ⁡ θ ) {\displaystyle Y_{8}^{-5}(\theta ,\varphi )={3 \over 64}{\sqrt {17017 \over 2\pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (5\cos ^{3}\theta -\cos \theta )} {\displaystyle Y_{8}^{-5}(\theta ,\varphi )={3 \over 64}{\sqrt {17017 \over 2\pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (5\cos ^{3}\theta -\cos \theta )}
Y 8 − 4 ( θ , φ ) = 3 128 1309 2 π ⋅ e − 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 65 cos 4 ⁡ θ − 26 cos 2 ⁡ θ + 1 ) {\displaystyle Y_{8}^{-4}(\theta ,\varphi )={3 \over 128}{\sqrt {1309 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (65\cos ^{4}\theta -26\cos ^{2}\theta +1)} {\displaystyle Y_{8}^{-4}(\theta ,\varphi )={3 \over 128}{\sqrt {1309 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (65\cos ^{4}\theta -26\cos ^{2}\theta +1)}
Y 8 − 3 ( θ , φ ) = 1 64 19635 2 π ⋅ e − 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 39 cos 5 ⁡ θ − 26 cos 3 ⁡ θ + 3 cos ⁡ θ ) {\displaystyle Y_{8}^{-3}(\theta ,\varphi )={1 \over 64}{\sqrt {19635 \over 2\pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (39\cos ^{5}\theta -26\cos ^{3}\theta +3\cos \theta )} {\displaystyle Y_{8}^{-3}(\theta ,\varphi )={1 \over 64}{\sqrt {19635 \over 2\pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (39\cos ^{5}\theta -26\cos ^{3}\theta +3\cos \theta )}
Y 8 − 2 ( θ , φ ) = 3 128 595 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 143 cos 6 ⁡ θ − 143 cos 4 ⁡ θ + 33 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{8}^{-2}(\theta ,\varphi )={3 \over 128}{\sqrt {595 \over \pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{6}\theta -143\cos ^{4}\theta +33\cos ^{2}\theta -1)} {\displaystyle Y_{8}^{-2}(\theta ,\varphi )={3 \over 128}{\sqrt {595 \over \pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{6}\theta -143\cos ^{4}\theta +33\cos ^{2}\theta -1)}
Y 8 − 1 ( θ , φ ) = 3 64 17 2 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ ( 715 cos 7 ⁡ θ − 1001 cos 5 ⁡ θ + 385 cos 3 ⁡ θ − 35 cos ⁡ θ ) {\displaystyle Y_{8}^{-1}(\theta ,\varphi )={3 \over 64}{\sqrt {17 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (715\cos ^{7}\theta -1001\cos ^{5}\theta +385\cos ^{3}\theta -35\cos \theta )} {\displaystyle Y_{8}^{-1}(\theta ,\varphi )={3 \over 64}{\sqrt {17 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (715\cos ^{7}\theta -1001\cos ^{5}\theta +385\cos ^{3}\theta -35\cos \theta )}
Y 8 0 ( θ , φ ) = 1 256 17 π ⋅ ( 6435 cos 8 ⁡ θ − 12012 cos 6 ⁡ θ + 6930 cos 4 ⁡ θ − 1260 cos 2 ⁡ θ + 35 ) {\displaystyle Y_{8}^{0}(\theta ,\varphi )={1 \over 256}{\sqrt {17 \over \pi }}\cdot (6435\cos ^{8}\theta -12012\cos ^{6}\theta +6930\cos ^{4}\theta -1260\cos ^{2}\theta +35)} {\displaystyle Y_{8}^{0}(\theta ,\varphi )={1 \over 256}{\sqrt {17 \over \pi }}\cdot (6435\cos ^{8}\theta -12012\cos ^{6}\theta +6930\cos ^{4}\theta -1260\cos ^{2}\theta +35)}
Y 8 1 ( θ , φ ) = − 3 64 17 2 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ ( 715 cos 7 ⁡ θ − 1001 cos 5 ⁡ θ + 385 cos 3 ⁡ θ − 35 cos ⁡ θ ) {\displaystyle Y_{8}^{1}(\theta ,\varphi )={-3 \over 64}{\sqrt {17 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (715\cos ^{7}\theta -1001\cos ^{5}\theta +385\cos ^{3}\theta -35\cos \theta )} {\displaystyle Y_{8}^{1}(\theta ,\varphi )={-3 \over 64}{\sqrt {17 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (715\cos ^{7}\theta -1001\cos ^{5}\theta +385\cos ^{3}\theta -35\cos \theta )}
Y 8 2 ( θ , φ ) = 3 128 595 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 143 cos 6 ⁡ θ − 143 cos 4 ⁡ θ + 33 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{8}^{2}(\theta ,\varphi )={3 \over 128}{\sqrt {595 \over \pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{6}\theta -143\cos ^{4}\theta +33\cos ^{2}\theta -1)} {\displaystyle Y_{8}^{2}(\theta ,\varphi )={3 \over 128}{\sqrt {595 \over \pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (143\cos ^{6}\theta -143\cos ^{4}\theta +33\cos ^{2}\theta -1)}
Y 8 3 ( θ , φ ) = − 1 64 19635 2 π ⋅ e 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 39 cos 5 ⁡ θ − 26 cos 3 ⁡ θ + 3 cos ⁡ θ ) {\displaystyle Y_{8}^{3}(\theta ,\varphi )={-1 \over 64}{\sqrt {19635 \over 2\pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (39\cos ^{5}\theta -26\cos ^{3}\theta +3\cos \theta )} {\displaystyle Y_{8}^{3}(\theta ,\varphi )={-1 \over 64}{\sqrt {19635 \over 2\pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (39\cos ^{5}\theta -26\cos ^{3}\theta +3\cos \theta )}
Y 8 4 ( θ , φ ) = 3 128 1309 2 π ⋅ e 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 65 cos 4 ⁡ θ − 26 cos 2 ⁡ θ + 1 ) {\displaystyle Y_{8}^{4}(\theta ,\varphi )={3 \over 128}{\sqrt {1309 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (65\cos ^{4}\theta -26\cos ^{2}\theta +1)} {\displaystyle Y_{8}^{4}(\theta ,\varphi )={3 \over 128}{\sqrt {1309 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (65\cos ^{4}\theta -26\cos ^{2}\theta +1)}
Y 8 5 ( θ , φ ) = − 3 64 17017 2 π ⋅ e 5 i φ ⋅ sin 5 ⁡ θ ⋅ ( 5 cos 3 ⁡ θ − cos ⁡ θ ) {\displaystyle Y_{8}^{5}(\theta ,\varphi )={-3 \over 64}{\sqrt {17017 \over 2\pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot (5\cos ^{3}\theta -\cos \theta )} {\displaystyle Y_{8}^{5}(\theta ,\varphi )={-3 \over 64}{\sqrt {17017 \over 2\pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot (5\cos ^{3}\theta -\cos \theta )}
Y 8 6 ( θ , φ ) = 1 128 7293 π ⋅ e 6 i φ ⋅ sin 6 ⁡ θ ⋅ ( 15 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{8}^{6}(\theta ,\varphi )={1 \over 128}{\sqrt {7293 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta \cdot (15\cos ^{2}\theta -1)} {\displaystyle Y_{8}^{6}(\theta ,\varphi )={1 \over 128}{\sqrt {7293 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta \cdot (15\cos ^{2}\theta -1)}
Y 8 7 ( θ , φ ) = − 3 64 12155 2 π ⋅ e 7 i φ ⋅ sin 7 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{8}^{7}(\theta ,\varphi )={-3 \over 64}{\sqrt {12155 \over 2\pi }}\cdot e^{7i\varphi }\cdot \sin ^{7}\theta \cdot \cos \theta } {\displaystyle Y_{8}^{7}(\theta ,\varphi )={-3 \over 64}{\sqrt {12155 \over 2\pi }}\cdot e^{7i\varphi }\cdot \sin ^{7}\theta \cdot \cos \theta }
Y 8 8 ( θ , φ ) = 3 256 12155 2 π ⋅ e 8 i φ ⋅ sin 8 ⁡ θ {\displaystyle Y_{8}^{8}(\theta ,\varphi )={3 \over 256}{\sqrt {12155 \over 2\pi }}\cdot e^{8i\varphi }\cdot \sin ^{8}\theta } {\displaystyle Y_{8}^{8}(\theta ,\varphi )={3 \over 256}{\sqrt {12155 \over 2\pi }}\cdot e^{8i\varphi }\cdot \sin ^{8}\theta }

l = 9

[değiştir | kaynağı değiştir]
Y 9 − 9 ( θ , φ ) = 1 512 230945 π ⋅ e − 9 i φ ⋅ sin 9 ⁡ θ {\displaystyle Y_{9}^{-9}(\theta ,\varphi )={1 \over 512}{\sqrt {230945 \over \pi }}\cdot e^{-9i\varphi }\cdot \sin ^{9}\theta } {\displaystyle Y_{9}^{-9}(\theta ,\varphi )={1 \over 512}{\sqrt {230945 \over \pi }}\cdot e^{-9i\varphi }\cdot \sin ^{9}\theta }
Y 9 − 8 ( θ , φ ) = 3 256 230945 2 π ⋅ e − 8 i φ ⋅ sin 8 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{9}^{-8}(\theta ,\varphi )={3 \over 256}{\sqrt {230945 \over 2\pi }}\cdot e^{-8i\varphi }\cdot \sin ^{8}\theta \cdot \cos \theta } {\displaystyle Y_{9}^{-8}(\theta ,\varphi )={3 \over 256}{\sqrt {230945 \over 2\pi }}\cdot e^{-8i\varphi }\cdot \sin ^{8}\theta \cdot \cos \theta }
Y 9 − 7 ( θ , φ ) = 3 512 13585 π ⋅ e − 7 i φ ⋅ sin 7 ⁡ θ ⋅ ( 17 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{9}^{-7}(\theta ,\varphi )={3 \over 512}{\sqrt {13585 \over \pi }}\cdot e^{-7i\varphi }\cdot \sin ^{7}\theta \cdot (17\cos ^{2}\theta -1)} {\displaystyle Y_{9}^{-7}(\theta ,\varphi )={3 \over 512}{\sqrt {13585 \over \pi }}\cdot e^{-7i\varphi }\cdot \sin ^{7}\theta \cdot (17\cos ^{2}\theta -1)}
Y 9 − 6 ( θ , φ ) = 1 128 40755 π ⋅ e − 6 i φ ⋅ sin 6 ⁡ θ ⋅ ( 17 cos 3 ⁡ θ − 3 cos ⁡ θ ) {\displaystyle Y_{9}^{-6}(\theta ,\varphi )={1 \over 128}{\sqrt {40755 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (17\cos ^{3}\theta -3\cos \theta )} {\displaystyle Y_{9}^{-6}(\theta ,\varphi )={1 \over 128}{\sqrt {40755 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (17\cos ^{3}\theta -3\cos \theta )}
Y 9 − 5 ( θ , φ ) = 3 256 2717 π ⋅ e − 5 i φ ⋅ sin 5 ⁡ θ ⋅ ( 85 cos 4 ⁡ θ − 30 cos 2 ⁡ θ + 1 ) {\displaystyle Y_{9}^{-5}(\theta ,\varphi )={3 \over 256}{\sqrt {2717 \over \pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (85\cos ^{4}\theta -30\cos ^{2}\theta +1)} {\displaystyle Y_{9}^{-5}(\theta ,\varphi )={3 \over 256}{\sqrt {2717 \over \pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (85\cos ^{4}\theta -30\cos ^{2}\theta +1)}
Y 9 − 4 ( θ , φ ) = 3 128 95095 2 π ⋅ e − 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 17 cos 5 ⁡ θ − 10 cos 3 ⁡ θ + cos ⁡ θ ) {\displaystyle Y_{9}^{-4}(\theta ,\varphi )={3 \over 128}{\sqrt {95095 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (17\cos ^{5}\theta -10\cos ^{3}\theta +\cos \theta )} {\displaystyle Y_{9}^{-4}(\theta ,\varphi )={3 \over 128}{\sqrt {95095 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (17\cos ^{5}\theta -10\cos ^{3}\theta +\cos \theta )}
Y 9 − 3 ( θ , φ ) = 1 256 21945 π ⋅ e − 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 221 cos 6 ⁡ θ − 195 cos 4 ⁡ θ + 39 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{9}^{-3}(\theta ,\varphi )={1 \over 256}{\sqrt {21945 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (221\cos ^{6}\theta -195\cos ^{4}\theta +39\cos ^{2}\theta -1)} {\displaystyle Y_{9}^{-3}(\theta ,\varphi )={1 \over 256}{\sqrt {21945 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (221\cos ^{6}\theta -195\cos ^{4}\theta +39\cos ^{2}\theta -1)}
Y 9 − 2 ( θ , φ ) = 3 128 1045 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 221 cos 7 ⁡ θ − 273 cos 5 ⁡ θ + 91 cos 3 ⁡ θ − 7 cos ⁡ θ ) {\displaystyle Y_{9}^{-2}(\theta ,\varphi )={3 \over 128}{\sqrt {1045 \over \pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (221\cos ^{7}\theta -273\cos ^{5}\theta +91\cos ^{3}\theta -7\cos \theta )} {\displaystyle Y_{9}^{-2}(\theta ,\varphi )={3 \over 128}{\sqrt {1045 \over \pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (221\cos ^{7}\theta -273\cos ^{5}\theta +91\cos ^{3}\theta -7\cos \theta )}
Y 9 − 1 ( θ , φ ) = 3 256 95 2 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ ( 2431 cos 8 ⁡ θ − 4004 cos 6 ⁡ θ + 2002 cos 4 ⁡ θ − 308 cos 2 ⁡ θ + 7 ) {\displaystyle Y_{9}^{-1}(\theta ,\varphi )={3 \over 256}{\sqrt {95 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (2431\cos ^{8}\theta -4004\cos ^{6}\theta +2002\cos ^{4}\theta -308\cos ^{2}\theta +7)} {\displaystyle Y_{9}^{-1}(\theta ,\varphi )={3 \over 256}{\sqrt {95 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (2431\cos ^{8}\theta -4004\cos ^{6}\theta +2002\cos ^{4}\theta -308\cos ^{2}\theta +7)}
Y 9 0 ( θ , φ ) = 1 256 19 π ⋅ ( 12155 cos 9 ⁡ θ − 25740 cos 7 ⁡ θ + 18018 cos 5 ⁡ θ − 4620 cos 3 ⁡ θ + 315 cos ⁡ θ ) {\displaystyle Y_{9}^{0}(\theta ,\varphi )={1 \over 256}{\sqrt {19 \over \pi }}\cdot (12155\cos ^{9}\theta -25740\cos ^{7}\theta +18018\cos ^{5}\theta -4620\cos ^{3}\theta +315\cos \theta )} {\displaystyle Y_{9}^{0}(\theta ,\varphi )={1 \over 256}{\sqrt {19 \over \pi }}\cdot (12155\cos ^{9}\theta -25740\cos ^{7}\theta +18018\cos ^{5}\theta -4620\cos ^{3}\theta +315\cos \theta )}
Y 9 1 ( θ , φ ) = − 3 256 95 2 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ ( 2431 cos 8 ⁡ θ − 4004 cos 6 ⁡ θ + 2002 cos 4 ⁡ θ − 308 cos 2 ⁡ θ + 7 ) {\displaystyle Y_{9}^{1}(\theta ,\varphi )={-3 \over 256}{\sqrt {95 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (2431\cos ^{8}\theta -4004\cos ^{6}\theta +2002\cos ^{4}\theta -308\cos ^{2}\theta +7)} {\displaystyle Y_{9}^{1}(\theta ,\varphi )={-3 \over 256}{\sqrt {95 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (2431\cos ^{8}\theta -4004\cos ^{6}\theta +2002\cos ^{4}\theta -308\cos ^{2}\theta +7)}
Y 9 2 ( θ , φ ) = 3 128 1045 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 221 cos 7 ⁡ θ − 273 cos 5 ⁡ θ + 91 cos 3 ⁡ θ − 7 cos ⁡ θ ) {\displaystyle Y_{9}^{2}(\theta ,\varphi )={3 \over 128}{\sqrt {1045 \over \pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (221\cos ^{7}\theta -273\cos ^{5}\theta +91\cos ^{3}\theta -7\cos \theta )} {\displaystyle Y_{9}^{2}(\theta ,\varphi )={3 \over 128}{\sqrt {1045 \over \pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (221\cos ^{7}\theta -273\cos ^{5}\theta +91\cos ^{3}\theta -7\cos \theta )}
Y 9 3 ( θ , φ ) = − 1 256 21945 π ⋅ e 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 221 cos 6 ⁡ θ − 195 cos 4 ⁡ θ + 39 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{9}^{3}(\theta ,\varphi )={-1 \over 256}{\sqrt {21945 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (221\cos ^{6}\theta -195\cos ^{4}\theta +39\cos ^{2}\theta -1)} {\displaystyle Y_{9}^{3}(\theta ,\varphi )={-1 \over 256}{\sqrt {21945 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (221\cos ^{6}\theta -195\cos ^{4}\theta +39\cos ^{2}\theta -1)}
Y 9 4 ( θ , φ ) = 3 128 95095 2 π ⋅ e 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 17 cos 5 ⁡ θ − 10 cos 3 ⁡ θ + cos ⁡ θ ) {\displaystyle Y_{9}^{4}(\theta ,\varphi )={3 \over 128}{\sqrt {95095 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (17\cos ^{5}\theta -10\cos ^{3}\theta +\cos \theta )} {\displaystyle Y_{9}^{4}(\theta ,\varphi )={3 \over 128}{\sqrt {95095 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (17\cos ^{5}\theta -10\cos ^{3}\theta +\cos \theta )}
Y 9 5 ( θ , φ ) = − 3 256 2717 π ⋅ e 5 i φ ⋅ sin 5 ⁡ θ ⋅ ( 85 cos 4 ⁡ θ − 30 cos 2 ⁡ θ + 1 ) {\displaystyle Y_{9}^{5}(\theta ,\varphi )={-3 \over 256}{\sqrt {2717 \over \pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot (85\cos ^{4}\theta -30\cos ^{2}\theta +1)} {\displaystyle Y_{9}^{5}(\theta ,\varphi )={-3 \over 256}{\sqrt {2717 \over \pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot (85\cos ^{4}\theta -30\cos ^{2}\theta +1)}
Y 9 6 ( θ , φ ) = 1 128 40755 π ⋅ e 6 i φ ⋅ sin 6 ⁡ θ ⋅ ( 17 cos 3 ⁡ θ − 3 cos ⁡ θ ) {\displaystyle Y_{9}^{6}(\theta ,\varphi )={1 \over 128}{\sqrt {40755 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta \cdot (17\cos ^{3}\theta -3\cos \theta )} {\displaystyle Y_{9}^{6}(\theta ,\varphi )={1 \over 128}{\sqrt {40755 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta \cdot (17\cos ^{3}\theta -3\cos \theta )}
Y 9 7 ( θ , φ ) = − 3 512 13585 π ⋅ e 7 i φ ⋅ sin 7 ⁡ θ ⋅ ( 17 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{9}^{7}(\theta ,\varphi )={-3 \over 512}{\sqrt {13585 \over \pi }}\cdot e^{7i\varphi }\cdot \sin ^{7}\theta \cdot (17\cos ^{2}\theta -1)} {\displaystyle Y_{9}^{7}(\theta ,\varphi )={-3 \over 512}{\sqrt {13585 \over \pi }}\cdot e^{7i\varphi }\cdot \sin ^{7}\theta \cdot (17\cos ^{2}\theta -1)}
Y 9 8 ( θ , φ ) = 3 256 230945 2 π ⋅ e 8 i φ ⋅ sin 8 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{9}^{8}(\theta ,\varphi )={3 \over 256}{\sqrt {230945 \over 2\pi }}\cdot e^{8i\varphi }\cdot \sin ^{8}\theta \cdot \cos \theta } {\displaystyle Y_{9}^{8}(\theta ,\varphi )={3 \over 256}{\sqrt {230945 \over 2\pi }}\cdot e^{8i\varphi }\cdot \sin ^{8}\theta \cdot \cos \theta }
Y 9 9 ( θ , φ ) = − 1 512 230945 π ⋅ e 9 i φ ⋅ sin 9 ⁡ θ {\displaystyle Y_{9}^{9}(\theta ,\varphi )={-1 \over 512}{\sqrt {230945 \over \pi }}\cdot e^{9i\varphi }\cdot \sin ^{9}\theta } {\displaystyle Y_{9}^{9}(\theta ,\varphi )={-1 \over 512}{\sqrt {230945 \over \pi }}\cdot e^{9i\varphi }\cdot \sin ^{9}\theta }

l = 10

[değiştir | kaynağı değiştir]
Y 10 − 10 ( θ , φ ) = 1 1024 969969 π ⋅ e − 10 i φ ⋅ sin 10 ⁡ θ {\displaystyle Y_{10}^{-10}(\theta ,\varphi )={1 \over 1024}{\sqrt {969969 \over \pi }}\cdot e^{-10i\varphi }\cdot \sin ^{10}\theta } {\displaystyle Y_{10}^{-10}(\theta ,\varphi )={1 \over 1024}{\sqrt {969969 \over \pi }}\cdot e^{-10i\varphi }\cdot \sin ^{10}\theta }
Y 10 − 9 ( θ , φ ) = 1 512 4849845 π ⋅ e − 9 i φ ⋅ sin 9 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{10}^{-9}(\theta ,\varphi )={1 \over 512}{\sqrt {4849845 \over \pi }}\cdot e^{-9i\varphi }\cdot \sin ^{9}\theta \cdot \cos \theta } {\displaystyle Y_{10}^{-9}(\theta ,\varphi )={1 \over 512}{\sqrt {4849845 \over \pi }}\cdot e^{-9i\varphi }\cdot \sin ^{9}\theta \cdot \cos \theta }
Y 10 − 8 ( θ , φ ) = 1 512 255255 2 π ⋅ e − 8 i φ ⋅ sin 8 ⁡ θ ⋅ ( 19 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{10}^{-8}(\theta ,\varphi )={1 \over 512}{\sqrt {255255 \over 2\pi }}\cdot e^{-8i\varphi }\cdot \sin ^{8}\theta \cdot (19\cos ^{2}\theta -1)} {\displaystyle Y_{10}^{-8}(\theta ,\varphi )={1 \over 512}{\sqrt {255255 \over 2\pi }}\cdot e^{-8i\varphi }\cdot \sin ^{8}\theta \cdot (19\cos ^{2}\theta -1)}
Y 10 − 7 ( θ , φ ) = 3 512 85085 π ⋅ e − 7 i φ ⋅ sin 7 ⁡ θ ⋅ ( 19 cos 3 ⁡ θ − 3 cos ⁡ θ ) {\displaystyle Y_{10}^{-7}(\theta ,\varphi )={3 \over 512}{\sqrt {85085 \over \pi }}\cdot e^{-7i\varphi }\cdot \sin ^{7}\theta \cdot (19\cos ^{3}\theta -3\cos \theta )} {\displaystyle Y_{10}^{-7}(\theta ,\varphi )={3 \over 512}{\sqrt {85085 \over \pi }}\cdot e^{-7i\varphi }\cdot \sin ^{7}\theta \cdot (19\cos ^{3}\theta -3\cos \theta )}
Y 10 − 6 ( θ , φ ) = 3 1024 5005 π ⋅ e − 6 i φ ⋅ sin 6 ⁡ θ ⋅ ( 323 cos 4 ⁡ θ − 102 cos 2 ⁡ θ + 3 ) {\displaystyle Y_{10}^{-6}(\theta ,\varphi )={3 \over 1024}{\sqrt {5005 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (323\cos ^{4}\theta -102\cos ^{2}\theta +3)} {\displaystyle Y_{10}^{-6}(\theta ,\varphi )={3 \over 1024}{\sqrt {5005 \over \pi }}\cdot e^{-6i\varphi }\cdot \sin ^{6}\theta \cdot (323\cos ^{4}\theta -102\cos ^{2}\theta +3)}
Y 10 − 5 ( θ , φ ) = 3 256 1001 π ⋅ e − 5 i φ ⋅ sin 5 ⁡ θ ⋅ ( 323 cos 5 ⁡ θ − 170 cos 3 ⁡ θ + 15 cos ⁡ θ ) {\displaystyle Y_{10}^{-5}(\theta ,\varphi )={3 \over 256}{\sqrt {1001 \over \pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (323\cos ^{5}\theta -170\cos ^{3}\theta +15\cos \theta )} {\displaystyle Y_{10}^{-5}(\theta ,\varphi )={3 \over 256}{\sqrt {1001 \over \pi }}\cdot e^{-5i\varphi }\cdot \sin ^{5}\theta \cdot (323\cos ^{5}\theta -170\cos ^{3}\theta +15\cos \theta )}
Y 10 − 4 ( θ , φ ) = 3 256 5005 2 π ⋅ e − 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 323 cos 6 ⁡ θ − 255 cos 4 ⁡ θ + 45 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{10}^{-4}(\theta ,\varphi )={3 \over 256}{\sqrt {5005 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (323\cos ^{6}\theta -255\cos ^{4}\theta +45\cos ^{2}\theta -1)} {\displaystyle Y_{10}^{-4}(\theta ,\varphi )={3 \over 256}{\sqrt {5005 \over 2\pi }}\cdot e^{-4i\varphi }\cdot \sin ^{4}\theta \cdot (323\cos ^{6}\theta -255\cos ^{4}\theta +45\cos ^{2}\theta -1)}
Y 10 − 3 ( θ , φ ) = 3 256 5005 π ⋅ e − 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 323 cos 7 ⁡ θ − 357 cos 5 ⁡ θ + 105 cos 3 ⁡ θ − 7 cos ⁡ θ ) {\displaystyle Y_{10}^{-3}(\theta ,\varphi )={3 \over 256}{\sqrt {5005 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (323\cos ^{7}\theta -357\cos ^{5}\theta +105\cos ^{3}\theta -7\cos \theta )} {\displaystyle Y_{10}^{-3}(\theta ,\varphi )={3 \over 256}{\sqrt {5005 \over \pi }}\cdot e^{-3i\varphi }\cdot \sin ^{3}\theta \cdot (323\cos ^{7}\theta -357\cos ^{5}\theta +105\cos ^{3}\theta -7\cos \theta )}
Y 10 − 2 ( θ , φ ) = 3 512 385 2 π ⋅ e − 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 4199 cos 8 ⁡ θ − 6188 cos 6 ⁡ θ + 2730 cos 4 ⁡ θ − 364 cos 2 ⁡ θ + 7 ) {\displaystyle Y_{10}^{-2}(\theta ,\varphi )={3 \over 512}{\sqrt {385 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (4199\cos ^{8}\theta -6188\cos ^{6}\theta +2730\cos ^{4}\theta -364\cos ^{2}\theta +7)} {\displaystyle Y_{10}^{-2}(\theta ,\varphi )={3 \over 512}{\sqrt {385 \over 2\pi }}\cdot e^{-2i\varphi }\cdot \sin ^{2}\theta \cdot (4199\cos ^{8}\theta -6188\cos ^{6}\theta +2730\cos ^{4}\theta -364\cos ^{2}\theta +7)}
Y 10 − 1 ( θ , φ ) = 1 256 1155 2 π ⋅ e − i φ ⋅ sin ⁡ θ ⋅ ( 4199 cos 9 ⁡ θ − 7956 cos 7 ⁡ θ + 4914 cos 5 ⁡ θ − 1092 cos 3 ⁡ θ + 63 cos ⁡ θ ) {\displaystyle Y_{10}^{-1}(\theta ,\varphi )={1 \over 256}{\sqrt {1155 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (4199\cos ^{9}\theta -7956\cos ^{7}\theta +4914\cos ^{5}\theta -1092\cos ^{3}\theta +63\cos \theta )} {\displaystyle Y_{10}^{-1}(\theta ,\varphi )={1 \over 256}{\sqrt {1155 \over 2\pi }}\cdot e^{-i\varphi }\cdot \sin \theta \cdot (4199\cos ^{9}\theta -7956\cos ^{7}\theta +4914\cos ^{5}\theta -1092\cos ^{3}\theta +63\cos \theta )}
Y 10 0 ( θ , φ ) = 1 512 21 π ⋅ ( 46189 cos 10 ⁡ θ − 109395 cos 8 ⁡ θ + 90090 cos 6 ⁡ θ − 30030 cos 4 ⁡ θ + 3465 cos 2 ⁡ θ − 63 ) {\displaystyle Y_{10}^{0}(\theta ,\varphi )={1 \over 512}{\sqrt {21 \over \pi }}\cdot (46189\cos ^{10}\theta -109395\cos ^{8}\theta +90090\cos ^{6}\theta -30030\cos ^{4}\theta +3465\cos ^{2}\theta -63)} {\displaystyle Y_{10}^{0}(\theta ,\varphi )={1 \over 512}{\sqrt {21 \over \pi }}\cdot (46189\cos ^{10}\theta -109395\cos ^{8}\theta +90090\cos ^{6}\theta -30030\cos ^{4}\theta +3465\cos ^{2}\theta -63)}
Y 10 1 ( θ , φ ) = − 1 256 1155 2 π ⋅ e i φ ⋅ sin ⁡ θ ⋅ ( 4199 cos 9 ⁡ θ − 7956 cos 7 ⁡ θ + 4914 cos 5 ⁡ θ − 1092 cos 3 ⁡ θ + 63 cos ⁡ θ ) {\displaystyle Y_{10}^{1}(\theta ,\varphi )={-1 \over 256}{\sqrt {1155 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (4199\cos ^{9}\theta -7956\cos ^{7}\theta +4914\cos ^{5}\theta -1092\cos ^{3}\theta +63\cos \theta )} {\displaystyle Y_{10}^{1}(\theta ,\varphi )={-1 \over 256}{\sqrt {1155 \over 2\pi }}\cdot e^{i\varphi }\cdot \sin \theta \cdot (4199\cos ^{9}\theta -7956\cos ^{7}\theta +4914\cos ^{5}\theta -1092\cos ^{3}\theta +63\cos \theta )}
Y 10 2 ( θ , φ ) = 3 512 385 2 π ⋅ e 2 i φ ⋅ sin 2 ⁡ θ ⋅ ( 4199 cos 8 ⁡ θ − 6188 cos 6 ⁡ θ + 2730 cos 4 ⁡ θ − 364 cos 2 ⁡ θ + 7 ) {\displaystyle Y_{10}^{2}(\theta ,\varphi )={3 \over 512}{\sqrt {385 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (4199\cos ^{8}\theta -6188\cos ^{6}\theta +2730\cos ^{4}\theta -364\cos ^{2}\theta +7)} {\displaystyle Y_{10}^{2}(\theta ,\varphi )={3 \over 512}{\sqrt {385 \over 2\pi }}\cdot e^{2i\varphi }\cdot \sin ^{2}\theta \cdot (4199\cos ^{8}\theta -6188\cos ^{6}\theta +2730\cos ^{4}\theta -364\cos ^{2}\theta +7)}
Y 10 3 ( θ , φ ) = − 3 256 5005 π ⋅ e 3 i φ ⋅ sin 3 ⁡ θ ⋅ ( 323 cos 7 ⁡ θ − 357 cos 5 ⁡ θ + 105 cos 3 ⁡ θ − 7 cos ⁡ θ ) {\displaystyle Y_{10}^{3}(\theta ,\varphi )={-3 \over 256}{\sqrt {5005 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (323\cos ^{7}\theta -357\cos ^{5}\theta +105\cos ^{3}\theta -7\cos \theta )} {\displaystyle Y_{10}^{3}(\theta ,\varphi )={-3 \over 256}{\sqrt {5005 \over \pi }}\cdot e^{3i\varphi }\cdot \sin ^{3}\theta \cdot (323\cos ^{7}\theta -357\cos ^{5}\theta +105\cos ^{3}\theta -7\cos \theta )}
Y 10 4 ( θ , φ ) = 3 256 5005 2 π ⋅ e 4 i φ ⋅ sin 4 ⁡ θ ⋅ ( 323 cos 6 ⁡ θ − 255 cos 4 ⁡ θ + 45 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{10}^{4}(\theta ,\varphi )={3 \over 256}{\sqrt {5005 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (323\cos ^{6}\theta -255\cos ^{4}\theta +45\cos ^{2}\theta -1)} {\displaystyle Y_{10}^{4}(\theta ,\varphi )={3 \over 256}{\sqrt {5005 \over 2\pi }}\cdot e^{4i\varphi }\cdot \sin ^{4}\theta \cdot (323\cos ^{6}\theta -255\cos ^{4}\theta +45\cos ^{2}\theta -1)}
Y 10 5 ( θ , φ ) = − 3 256 1001 π ⋅ e 5 i φ ⋅ sin 5 ⁡ θ ⋅ ( 323 cos 5 ⁡ θ − 170 cos 3 ⁡ θ + 15 cos ⁡ θ ) {\displaystyle Y_{10}^{5}(\theta ,\varphi )={-3 \over 256}{\sqrt {1001 \over \pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot (323\cos ^{5}\theta -170\cos ^{3}\theta +15\cos \theta )} {\displaystyle Y_{10}^{5}(\theta ,\varphi )={-3 \over 256}{\sqrt {1001 \over \pi }}\cdot e^{5i\varphi }\cdot \sin ^{5}\theta \cdot (323\cos ^{5}\theta -170\cos ^{3}\theta +15\cos \theta )}
Y 10 6 ( θ , φ ) = 3 1024 5005 π ⋅ e 6 i φ ⋅ sin 6 ⁡ θ ⋅ ( 323 cos 4 ⁡ θ − 102 cos 2 ⁡ θ + 3 ) {\displaystyle Y_{10}^{6}(\theta ,\varphi )={3 \over 1024}{\sqrt {5005 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta \cdot (323\cos ^{4}\theta -102\cos ^{2}\theta +3)} {\displaystyle Y_{10}^{6}(\theta ,\varphi )={3 \over 1024}{\sqrt {5005 \over \pi }}\cdot e^{6i\varphi }\cdot \sin ^{6}\theta \cdot (323\cos ^{4}\theta -102\cos ^{2}\theta +3)}
Y 10 7 ( θ , φ ) = − 3 512 85085 π ⋅ e 7 i φ ⋅ sin 7 ⁡ θ ⋅ ( 19 cos 3 ⁡ θ − 3 cos ⁡ θ ) {\displaystyle Y_{10}^{7}(\theta ,\varphi )={-3 \over 512}{\sqrt {85085 \over \pi }}\cdot e^{7i\varphi }\cdot \sin ^{7}\theta \cdot (19\cos ^{3}\theta -3\cos \theta )} {\displaystyle Y_{10}^{7}(\theta ,\varphi )={-3 \over 512}{\sqrt {85085 \over \pi }}\cdot e^{7i\varphi }\cdot \sin ^{7}\theta \cdot (19\cos ^{3}\theta -3\cos \theta )}
Y 10 8 ( θ , φ ) = 1 512 255255 2 π ⋅ e 8 i φ ⋅ sin 8 ⁡ θ ⋅ ( 19 cos 2 ⁡ θ − 1 ) {\displaystyle Y_{10}^{8}(\theta ,\varphi )={1 \over 512}{\sqrt {255255 \over 2\pi }}\cdot e^{8i\varphi }\cdot \sin ^{8}\theta \cdot (19\cos ^{2}\theta -1)} {\displaystyle Y_{10}^{8}(\theta ,\varphi )={1 \over 512}{\sqrt {255255 \over 2\pi }}\cdot e^{8i\varphi }\cdot \sin ^{8}\theta \cdot (19\cos ^{2}\theta -1)}
Y 10 9 ( θ , φ ) = − 1 512 4849845 π ⋅ e 9 i φ ⋅ sin 9 ⁡ θ ⋅ cos ⁡ θ {\displaystyle Y_{10}^{9}(\theta ,\varphi )={-1 \over 512}{\sqrt {4849845 \over \pi }}\cdot e^{9i\varphi }\cdot \sin ^{9}\theta \cdot \cos \theta } {\displaystyle Y_{10}^{9}(\theta ,\varphi )={-1 \over 512}{\sqrt {4849845 \over \pi }}\cdot e^{9i\varphi }\cdot \sin ^{9}\theta \cdot \cos \theta }
Y 10 10 ( θ , φ ) = 1 1024 969969 π ⋅ e 10 i φ ⋅ sin 10 ⁡ θ {\displaystyle Y_{10}^{10}(\theta ,\varphi )={1 \over 1024}{\sqrt {969969 \over \pi }}\cdot e^{10i\varphi }\cdot \sin ^{10}\theta } {\displaystyle Y_{10}^{10}(\theta ,\varphi )={1 \over 1024}{\sqrt {969969 \over \pi }}\cdot e^{10i\varphi }\cdot \sin ^{10}\theta }

Gerçek küresel harmonikler

[değiştir | kaynağı değiştir]

Her Gerçek küresel harmonik için, karşılık gelen (s, p, d, f, g) atomik orbital sembolü de bildirilmektedir.

l = 0[2][3]

[değiştir | kaynağı değiştir]
Y 00 = s = Y 0 0 = 1 2 1 π {\displaystyle {\begin{aligned}Y_{00}&=s=Y_{0}^{0}={\frac {1}{2}}{\sqrt {\frac {1}{\pi }}}\end{aligned}}} {\displaystyle {\begin{aligned}Y_{00}&=s=Y_{0}^{0}={\frac {1}{2}}{\sqrt {\frac {1}{\pi }}}\end{aligned}}}

l = 1[2][3]

[değiştir | kaynağı değiştir]
Y 1 , − 1 = p y = i 1 2 ( Y 1 − 1 + Y 1 1 ) = 3 4 π ⋅ y r Y 10 = p z = Y 1 0 = 3 4 π ⋅ z r Y 11 = p x = 1 2 ( Y 1 − 1 − Y 1 1 ) = 3 4 π ⋅ x r {\displaystyle {\begin{aligned}Y_{1,-1}&=p_{y}=i{\sqrt {\frac {1}{2}}}\left(Y_{1}^{-1}+Y_{1}^{1}\right)={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {y}{r}}\\Y_{10}&=p_{z}=Y_{1}^{0}={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {z}{r}}\\Y_{11}&=p_{x}={\sqrt {\frac {1}{2}}}\left(Y_{1}^{-1}-Y_{1}^{1}\right)={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {x}{r}}\end{aligned}}} {\displaystyle {\begin{aligned}Y_{1,-1}&=p_{y}=i{\sqrt {\frac {1}{2}}}\left(Y_{1}^{-1}+Y_{1}^{1}\right)={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {y}{r}}\\Y_{10}&=p_{z}=Y_{1}^{0}={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {z}{r}}\\Y_{11}&=p_{x}={\sqrt {\frac {1}{2}}}\left(Y_{1}^{-1}-Y_{1}^{1}\right)={\sqrt {\frac {3}{4\pi }}}\cdot {\frac {x}{r}}\end{aligned}}}

l = 2[2][3]

[değiştir | kaynağı değiştir]
Y 2 , − 2 = d x y = i 1 2 ( Y 2 − 2 − Y 2 2 ) = 1 2 15 π ⋅ x y r 2 Y 2 , − 1 = d y z = i 1 2 ( Y 2 − 1 + Y 2 1 ) = 1 2 15 π ⋅ y z r 2 Y 20 = d z 2 = Y 2 0 = 1 4 5 π ⋅ − x 2 − y 2 + 2 z 2 r 2 Y 21 = d x z = 1 2 ( Y 2 − 1 − Y 2 1 ) = 1 2 15 π ⋅ z x r 2 Y 22 = d x 2 − y 2 = 1 2 ( Y 2 − 2 + Y 2 2 ) = 1 4 15 π ⋅ x 2 − y 2 r 2 {\displaystyle {\begin{aligned}Y_{2,-2}&=d_{xy}=i{\sqrt {\frac {1}{2}}}\left(Y_{2}^{-2}-Y_{2}^{2}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {xy}{r^{2}}}\\Y_{2,-1}&=d_{yz}=i{\sqrt {\frac {1}{2}}}\left(Y_{2}^{-1}+Y_{2}^{1}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {yz}{r^{2}}}\\Y_{20}&=d_{z^{2}}=Y_{2}^{0}={\frac {1}{4}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {-x^{2}-y^{2}+2z^{2}}{r^{2}}}\\Y_{21}&=d_{xz}={\sqrt {\frac {1}{2}}}\left(Y_{2}^{-1}-Y_{2}^{1}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {zx}{r^{2}}}\\Y_{22}&=d_{x^{2}-y^{2}}={\sqrt {\frac {1}{2}}}\left(Y_{2}^{-2}+Y_{2}^{2}\right)={\frac {1}{4}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {x^{2}-y^{2}}{r^{2}}}\end{aligned}}} {\displaystyle {\begin{aligned}Y_{2,-2}&=d_{xy}=i{\sqrt {\frac {1}{2}}}\left(Y_{2}^{-2}-Y_{2}^{2}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {xy}{r^{2}}}\\Y_{2,-1}&=d_{yz}=i{\sqrt {\frac {1}{2}}}\left(Y_{2}^{-1}+Y_{2}^{1}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {yz}{r^{2}}}\\Y_{20}&=d_{z^{2}}=Y_{2}^{0}={\frac {1}{4}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {-x^{2}-y^{2}+2z^{2}}{r^{2}}}\\Y_{21}&=d_{xz}={\sqrt {\frac {1}{2}}}\left(Y_{2}^{-1}-Y_{2}^{1}\right)={\frac {1}{2}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {zx}{r^{2}}}\\Y_{22}&=d_{x^{2}-y^{2}}={\sqrt {\frac {1}{2}}}\left(Y_{2}^{-2}+Y_{2}^{2}\right)={\frac {1}{4}}{\sqrt {\frac {15}{\pi }}}\cdot {\frac {x^{2}-y^{2}}{r^{2}}}\end{aligned}}}

l = 3[2]

[değiştir | kaynağı değiştir]
Y 3 , − 3 = f y ( 3 x 2 − y 2 ) = i 1 2 ( Y 3 − 3 + Y 3 3 ) = 1 4 35 2 π ⋅ ( 3 x 2 − y 2 ) y r 3 Y 3 , − 2 = f x y z = i 1 2 ( Y 3 − 2 − Y 3 2 ) = 1 2 105 π ⋅ x y z r 3 Y 3 , − 1 = f y z 2 = i 1 2 ( Y 3 − 1 + Y 3 1 ) = 1 4 21 2 π ⋅ y ( 4 z 2 − x 2 − y 2 ) r 3 Y 30 = f z 3 = Y 3 0 = 1 4 7 π ⋅ z ( 2 z 2 − 3 x 2 − 3 y 2 ) r 3 Y 31 = f x z 2 = 1 2 ( Y 3 − 1 − Y 3 1 ) = 1 4 21 2 π ⋅ x ( 4 z 2 − x 2 − y 2 ) r 3 Y 32 = f z ( x 2 − y 2 ) = 1 2 ( Y 3 − 2 + Y 3 2 ) = 1 4 105 π ⋅ ( x 2 − y 2 ) z r 3 Y 33 = f x ( x 2 − 3 y 2 ) = 1 2 ( Y 3 − 3 − Y 3 3 ) = 1 4 35 2 π ⋅ ( x 2 − 3 y 2 ) x r 3 {\displaystyle {\begin{aligned}Y_{3,-3}&=f_{y(3x^{2}-y^{2})}=i{\sqrt {\frac {1}{2}}}\left(Y_{3}^{-3}+Y_{3}^{3}\right)={\frac {1}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {\left(3x^{2}-y^{2}\right)y}{r^{3}}}\\Y_{3,-2}&=f_{xyz}=i{\sqrt {\frac {1}{2}}}\left(Y_{3}^{-2}-Y_{3}^{2}\right)={\frac {1}{2}}{\sqrt {\frac {105}{\pi }}}\cdot {\frac {xyz}{r^{3}}}\\Y_{3,-1}&=f_{yz^{2}}=i{\sqrt {\frac {1}{2}}}\left(Y_{3}^{-1}+Y_{3}^{1}\right)={\frac {1}{4}}{\sqrt {\frac {21}{2\pi }}}\cdot {\frac {y(4z^{2}-x^{2}-y^{2})}{r^{3}}}\\Y_{30}&=f_{z^{3}}=Y_{3}^{0}={\frac {1}{4}}{\sqrt {\frac {7}{\pi }}}\cdot {\frac {z(2z^{2}-3x^{2}-3y^{2})}{r^{3}}}\\Y_{31}&=f_{xz^{2}}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-1}-Y_{3}^{1}\right)={\frac {1}{4}}{\sqrt {\frac {21}{2\pi }}}\cdot {\frac {x(4z^{2}-x^{2}-y^{2})}{r^{3}}}\\Y_{32}&=f_{z(x^{2}-y^{2})}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-2}+Y_{3}^{2}\right)={\frac {1}{4}}{\sqrt {\frac {105}{\pi }}}\cdot {\frac {\left(x^{2}-y^{2}\right)z}{r^{3}}}\\Y_{33}&=f_{x(x^{2}-3y^{2})}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-3}-Y_{3}^{3}\right)={\frac {1}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {\left(x^{2}-3y^{2}\right)x}{r^{3}}}\end{aligned}}} {\displaystyle {\begin{aligned}Y_{3,-3}&=f_{y(3x^{2}-y^{2})}=i{\sqrt {\frac {1}{2}}}\left(Y_{3}^{-3}+Y_{3}^{3}\right)={\frac {1}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {\left(3x^{2}-y^{2}\right)y}{r^{3}}}\\Y_{3,-2}&=f_{xyz}=i{\sqrt {\frac {1}{2}}}\left(Y_{3}^{-2}-Y_{3}^{2}\right)={\frac {1}{2}}{\sqrt {\frac {105}{\pi }}}\cdot {\frac {xyz}{r^{3}}}\\Y_{3,-1}&=f_{yz^{2}}=i{\sqrt {\frac {1}{2}}}\left(Y_{3}^{-1}+Y_{3}^{1}\right)={\frac {1}{4}}{\sqrt {\frac {21}{2\pi }}}\cdot {\frac {y(4z^{2}-x^{2}-y^{2})}{r^{3}}}\\Y_{30}&=f_{z^{3}}=Y_{3}^{0}={\frac {1}{4}}{\sqrt {\frac {7}{\pi }}}\cdot {\frac {z(2z^{2}-3x^{2}-3y^{2})}{r^{3}}}\\Y_{31}&=f_{xz^{2}}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-1}-Y_{3}^{1}\right)={\frac {1}{4}}{\sqrt {\frac {21}{2\pi }}}\cdot {\frac {x(4z^{2}-x^{2}-y^{2})}{r^{3}}}\\Y_{32}&=f_{z(x^{2}-y^{2})}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-2}+Y_{3}^{2}\right)={\frac {1}{4}}{\sqrt {\frac {105}{\pi }}}\cdot {\frac {\left(x^{2}-y^{2}\right)z}{r^{3}}}\\Y_{33}&=f_{x(x^{2}-3y^{2})}={\sqrt {\frac {1}{2}}}\left(Y_{3}^{-3}-Y_{3}^{3}\right)={\frac {1}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {\left(x^{2}-3y^{2}\right)x}{r^{3}}}\end{aligned}}}

l = 4

[değiştir | kaynağı değiştir]
Y 4 , − 4 = g x y ( x 2 − y 2 ) = i 1 2 ( Y 4 − 4 − Y 4 4 ) = 3 4 35 π ⋅ x y ( x 2 − y 2 ) r 4 Y 4 , − 3 = g z y 3 = i 1 2 ( Y 4 − 3 + Y 4 3 ) = 3 4 35 2 π ⋅ ( 3 x 2 − y 2 ) y z r 4 Y 4 , − 2 = g z 2 x y = i 1 2 ( Y 4 − 2 − Y 4 2 ) = 3 4 5 π ⋅ x y ⋅ ( 7 z 2 − r 2 ) r 4 Y 4 , − 1 = g z 3 y = i 1 2 ( Y 4 − 1 + Y 4 1 ) = 3 4 5 2 π ⋅ y z ⋅ ( 7 z 2 − 3 r 2 ) r 4 Y 40 = g z 4 = Y 4 0 = 3 16 1 π ⋅ ( 35 z 4 − 30 z 2 r 2 + 3 r 4 ) r 4 Y 41 = g z 3 x = 1 2 ( Y 4 − 1 − Y 4 1 ) = 3 4 5 2 π ⋅ x z ⋅ ( 7 z 2 − 3 r 2 ) r 4 Y 42 = g z 2 x y = 1 2 ( Y 4 − 2 + Y 4 2 ) = 3 8 5 π ⋅ ( x 2 − y 2 ) ⋅ ( 7 z 2 − r 2 ) r 4 Y 43 = g z x 3 = 1 2 ( Y 4 − 3 − Y 4 3 ) = 3 4 35 2 π ⋅ ( x 2 − 3 y 2 ) x z r 4 Y 44 = g x 4 + y 4 = 1 2 ( Y 4 − 4 + Y 4 4 ) = 3 16 35 π ⋅ x 2 ( x 2 − 3 y 2 ) − y 2 ( 3 x 2 − y 2 ) r 4 {\displaystyle {\begin{aligned}Y_{4,-4}&=g_{xy(x^{2}-y^{2})}=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-4}-Y_{4}^{4}\right)={\frac {3}{4}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {xy\left(x^{2}-y^{2}\right)}{r^{4}}}\\Y_{4,-3}&=g_{zy^{3}}=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-3}+Y_{4}^{3}\right)={\frac {3}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(3x^{2}-y^{2})yz}{r^{4}}}\\Y_{4,-2}&=g_{z^{2}xy}=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-2}-Y_{4}^{2}\right)={\frac {3}{4}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {xy\cdot (7z^{2}-r^{2})}{r^{4}}}\\Y_{4,-1}&=g_{z^{3}y}=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-1}+Y_{4}^{1}\right)={\frac {3}{4}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {yz\cdot (7z^{2}-3r^{2})}{r^{4}}}\\Y_{40}&=g_{z^{4}}=Y_{4}^{0}={\frac {3}{16}}{\sqrt {\frac {1}{\pi }}}\cdot {\frac {(35z^{4}-30z^{2}r^{2}+3r^{4})}{r^{4}}}\\Y_{41}&=g_{z^{3}x}={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-1}-Y_{4}^{1}\right)={\frac {3}{4}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {xz\cdot (7z^{2}-3r^{2})}{r^{4}}}\\Y_{42}&=g_{z^{2}xy}={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-2}+Y_{4}^{2}\right)={\frac {3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x^{2}-y^{2})\cdot (7z^{2}-r^{2})}{r^{4}}}\\Y_{43}&=g_{zx^{3}}={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-3}-Y_{4}^{3}\right)={\frac {3}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(x^{2}-3y^{2})xz}{r^{4}}}\\Y_{44}&=g_{x^{4}+y^{4}}={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-4}+Y_{4}^{4}\right)={\frac {3}{16}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {x^{2}\left(x^{2}-3y^{2}\right)-y^{2}\left(3x^{2}-y^{2}\right)}{r^{4}}}\end{aligned}}} {\displaystyle {\begin{aligned}Y_{4,-4}&=g_{xy(x^{2}-y^{2})}=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-4}-Y_{4}^{4}\right)={\frac {3}{4}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {xy\left(x^{2}-y^{2}\right)}{r^{4}}}\\Y_{4,-3}&=g_{zy^{3}}=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-3}+Y_{4}^{3}\right)={\frac {3}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(3x^{2}-y^{2})yz}{r^{4}}}\\Y_{4,-2}&=g_{z^{2}xy}=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-2}-Y_{4}^{2}\right)={\frac {3}{4}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {xy\cdot (7z^{2}-r^{2})}{r^{4}}}\\Y_{4,-1}&=g_{z^{3}y}=i{\sqrt {\frac {1}{2}}}\left(Y_{4}^{-1}+Y_{4}^{1}\right)={\frac {3}{4}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {yz\cdot (7z^{2}-3r^{2})}{r^{4}}}\\Y_{40}&=g_{z^{4}}=Y_{4}^{0}={\frac {3}{16}}{\sqrt {\frac {1}{\pi }}}\cdot {\frac {(35z^{4}-30z^{2}r^{2}+3r^{4})}{r^{4}}}\\Y_{41}&=g_{z^{3}x}={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-1}-Y_{4}^{1}\right)={\frac {3}{4}}{\sqrt {\frac {5}{2\pi }}}\cdot {\frac {xz\cdot (7z^{2}-3r^{2})}{r^{4}}}\\Y_{42}&=g_{z^{2}xy}={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-2}+Y_{4}^{2}\right)={\frac {3}{8}}{\sqrt {\frac {5}{\pi }}}\cdot {\frac {(x^{2}-y^{2})\cdot (7z^{2}-r^{2})}{r^{4}}}\\Y_{43}&=g_{zx^{3}}={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-3}-Y_{4}^{3}\right)={\frac {3}{4}}{\sqrt {\frac {35}{2\pi }}}\cdot {\frac {(x^{2}-3y^{2})xz}{r^{4}}}\\Y_{44}&=g_{x^{4}+y^{4}}={\sqrt {\frac {1}{2}}}\left(Y_{4}^{-4}+Y_{4}^{4}\right)={\frac {3}{16}}{\sqrt {\frac {35}{\pi }}}\cdot {\frac {x^{2}\left(x^{2}-3y^{2}\right)-y^{2}\left(3x^{2}-y^{2}\right)}{r^{4}}}\end{aligned}}}

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Küresel harmonikler

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • Spherical Harmonic 25 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi. at MathWorld

Kaynakça

[değiştir | kaynağı değiştir]
Cite kaynakça
  1. ^ a b c d e f D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii (1988). Quantum theory of angular momentum : irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols (1. repr. bas.). Singapore: World Scientific Pub. s. 155-156. ISBN 9971-50-107-4. KB1 bakım: Birden fazla ad: yazar listesi (link)
  2. ^ a b c d C.D.H. Chisholm (1976). Group theoretical techniques in quantum chemistry. New York: Academic Press. ISBN 0-12-172950-8. 
  3. ^ a b c Blanco, Miguel A.; Flórez, M.; Bermejo, M. (1 Aralık 1997). "Evaluation of the rotation matrices in the basis of real spherical harmonics". Journal of Molecular Structure: THEOCHEM. 419 (1–3). ss. 19-27. doi:10.1016/S0166-1280(97)00185-1. 
Genel kaynakça
  • See section 3 in Mathar, R. J. (2009). "Zernike basis to cartesian transformations". Serbian Astronomical Journal. 179 (179). ss. 107-120. arXiv:0809.2368 Özgürce erişilebilir. Bibcode:2009SerAj.179..107M. doi:10.2298/SAJ0979107M.  (see section 3.3)
  • For complex spherical harmonics, see also 27 Nisan 2014 tarihinde Wayback Machine sitesinde [https://web.archive.org/web/20140427011929/http://www.wolframalpha.com/input/?i=SphericalHarmonicY%5Bl,m,theta,phi%5D arşivlendi. SphericalHarmonicY[l,m,theta,phi] at Wolfram Alpha], especially for specific values of l and m.
"https://tr.wikipedia.org/w/index.php?title=Küresel_harmoniklerin_tablosu&oldid=36239330" sayfasından alınmıştır
Kategori:
  • Özel hipergeometrik fonksiyonlar
Gizli kategoriler:
  • KB1 bakım: Birden fazla ad: yazar listesi
  • Düzenlenmesi gereken maddeler Aralık 2019
  • Webarşiv şablonu wayback bağlantıları
  • Sayfa en son 13.37, 22 Ekim 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Küresel harmoniklerin tablosu
Konu ekle