Düğüm teorisi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Matematiksel Açıklama
  • 2 Kaynakça

Düğüm teorisi

  • العربية
  • Asturianu
  • Català
  • Čeština
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Magyar
  • Íslenska
  • İtaliano
  • 日本語
  • 한국어
  • मराठी
  • Bahasa Melayu
  • Nederlands
  • Norsk bokmål
  • ਪੰਜਾਬੀ
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Српски / srpski
  • Svenska
  • தமிழ்
  • Українська
  • Tiếng Việt
  • 吴语
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Düğüm teorisi Alman matematikçi Carl Friedrich Gauss düğüm kuramına ilişkin çalışmalar yapmış, ama bu konuda herhangi bir yapıt yayımlamamıştı. 19.yüzyılda Alman matematikçi Gauss ile başlayan düğüm teorisi ve 3-boyutlu manifoldlarla ilgili çalışmalar gelişerek halen devam etmektedir. Düğüm kuramı çoğunlukla, bir topolojik uzayın bir başka topolojik uzayın içine yerleştirilmesi problemleri gibi özel uygulamaları gerektiren durumlarda kullanılır.

Matematiksel Açıklama

[değiştir | kaynağı değiştir]

3-boyutlu küre S³ = R³ ∪ {∞} ile gösterilsin. S³ içinde S¹ = {(x,y,z) : x² + y² = 1, z = 0 çemberi ile topolojik eş yapılı (homeomorf) olan herhangi bir kümeye bir düğüm denir. Yani düğüm, uzayda basit kapalı bir eğridir. Diğer bir ifadeyle düğüm, birim çemberin uzay içindeki konumudur.

Düğüm kuramı ise, matematikte, üç boyutlu kapalı eğrilerin araştırılmasına yönelik kuramdır. Bu tür eğriler, ilmik atıldıktan sonra uçları birleştirilen herhangi bir ip parçasına benzetilebilir.[1] Tek bir devreye karşılık gelen düğümün topolojik eşdeğeri çemberdir. Ama çemberle özdeş değildir, çünkü düğüm, bir ya da daha çok noktada kendi içerisinden geçirilmedikçe çember biçimine dönüştürülemez. Bu durum ise, düğümün iki boyutlu grafiğinde, eğrinin kendisiyle kesişmesi demektir. En basit düğümlerde, bu türden üç kesişme bulunur; bu nedenle düğüm, üç basamaklı olarak kabul edilir. En basit türden düğümün bile, birbirine dönüştürülemeyen iki yapılandırması vardır. Basamak yükseldikçe belirgin düğüm sayısı da hızla artar, ama 20. yüzyılın ortalarına değin, belirli bir basamakta elde edilebile­cek düğüm sayısının hesaplanmasını olanak­lı kılan herhangi bir yöntem bulunamadı. Öte yandan, yüksek basamaklardan bazı düğümlerin, daha düşük basamaktan düğümlerin birleşimi biçiminde ifade edilebileceği gösterildi. Örneğin, altıncı basamaktan düğümler olan camadan ve acemi bağlan, yonca yaprağı biçimindeki iki düğüme indirgenebilir. Çözülemeyen düğümlere ise asal düğüm denir.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Manav, Nesibe (23 Haziran 2020). "Düğüm Düğüm Bir Dünya: Düğüm Teorisi Nedir?". Matematiksel. 12 Aralık 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 12 Aralık 2022. 
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • GND: 4164318-5
  • LCCN: sh85072726
  • NDL: 00567942
  • NKC: ph561344
  • NLI: 987007545794605171
"https://tr.wikipedia.org/w/index.php?title=Düğüm_teorisi&oldid=35687721" sayfasından alınmıştır
Kategoriler:
  • Geometrik topoloji
  • Cebirsel topoloji
  • Düğümler
Gizli kategoriler:
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NDL tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 07.43, 15 Temmuz 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Düğüm teorisi
Konu ekle