İyi sıralı - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kaynakça

İyi sıralı

  • Čeština
  • Dansk
  • Deutsch
  • English
  • Esperanto
  • Español
  • Eesti
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Magyar
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • 한국어
  • Nederlands
  • Polski
  • Português
  • Română
  • Svenska
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Matematikte, bir S kümesinin boş olmayan her altkümesi için, en küçük bir eleman tanımlayan tam sıralara, S kümesi üzerinde tanımlı bir iyi-sıra denir. İyi-sıralılık özelliğine sahip bir S kümesi iyi sıralı bir kümedir.[1]

Örneğin doğal sayıların normal bir sırası iyi sıralıdır fakat ne tam sayıların ne de pozitif reel sayıların normal bir sırası iyi sıralı değildir.

İyi sıralı bir S kümesinde sonsuz olarak azalan bir zincir bulunamaz, yani S kümesinde her i için a i + 1 < a i {\displaystyle a_{i+1}<a_{i}} {\displaystyle a_{i+1}<a_{i}} olacak bir ( a i ) {\displaystyle (a_{i})} {\displaystyle (a_{i})} dizisi bulunamaz. Seçim aksiyomu kullanılarak bu özelliğin iyi sıralılık ilkesine denk olduğu gösterilebilir. Ayrıca bu özellik Zorn Lemma'sına da denktir.

İyi sıralı bir kümede, mevcut olabilecek en büyük eleman dışındaki her a elemanının belirli bir ardılı bulunur: a elemanından daha büyük olan tüm elemanların altkümesinin en küçük elemanı.

Bununla birlikte her elemanın bir öncel elemanı olmak zorunda değil. Örneğin doğal sayılar kümesinin iki kopyasını ele alalım ve bu kopyaların, ikinci kopyadaki her elemanın ilk kopyadaki her elemandan daha büyük olacak şekilde sıralı olduğunu varsayalım. Her kopyada normal sıralılık seçilirse her iki küme iyi sıralı bir kümedir ve ω + ω {\displaystyle \omega +\omega } {\displaystyle \omega +\omega } şeklinde gösterilir. Burada her elemanın bir ardıl elemanı bulunmasına karşın (yani en büyük bir eleman olmamasına karşın) öncel elemanı olmayan iki eleman bulunur: Birinci kopyanın sıfır sayısı (bu kümenin en küçük elemanı) ve ikinci kopyanın sıfır sayısı (ilk kopyanın her elemanı bu sayıdan daha küçüktür fakat alt kümede en büyük eleman yoktur).

Bir küme iyi sıralı ise verili bir önermenin bu kümenin tüm elemanları için doğru olduğunu göstermek için, sonluötesi tümevarım tekniği kullanılabilir. (Tam tümevarım bu tekniğin özel bir durumudur.) Seçim aksiyomuna denk olan iyi-sıralılık ilkesi her kümenin iyi sıralı bir küme yapılabileceğini ifade eder.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ "Kümeler Kuramı" (PDF). David Pierce. Mimar Sinan Güzel Sanatlar Üniversitesi. 18 Nisan 2013. 9 Aralık 2017 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 9 Ocak 2021. 
"https://tr.wikipedia.org/w/index.php?title=İyi_sıralı&oldid=35619741" sayfasından alınmıştır
Kategoriler:
  • Sıra teorisi
  • Matematiksel tümevarım
  • Sayfa en son 16.29, 8 Temmuz 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
İyi sıralı
Konu ekle