Peano aksiyomları - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

Peano aksiyomları

  • العربية
  • Azərbaycanca
  • Беларуская
  • Беларуская (тарашкевіца)
  • Български
  • Bosanski
  • Català
  • Čeština
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • עברית
  • हिन्दी
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • ქართული
  • Қазақша
  • 한국어
  • Latviešu
  • Монгол
  • Nederlands
  • Norsk bokmål
  • Piemontèis
  • Português
  • Русский
  • Српски / srpski
  • Svenska
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Peano belitleri sayfasından yönlendirildi)
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Peano aksiyomları" – haber · gazete · kitap · akademik · JSTOR
(Kasım 2023) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)

Peano aksiyomları, doğal sayılar kümesinin tanımını vermekte kullanılan, Giuseppe Peano ve Julius Wilhelm Richard Dedekind tarafından ortaya konmuş dört temel ve bir yardımcı aksiyomdur. Bu aksiyomlar:

a. Verilen küme boş değildir. 1 adı verilen bir nesne içerir.

1 ∈ N {\displaystyle 1\in \mathbb {N} } {\displaystyle 1\in \mathbb {N} }

b. Her doğal sayı için onun ardılı denilen başka bir doğal sayı ve yalnızca bir doğal sayı vardır.

c. Ardılı 1 olan hiçbir doğal sayı yoktur.

d. İki doğal sayının ardılları eşitse, bu iki doğal sayı da eşittir.

e. Eğer herhangi bir doğal sayı topluluğu 1'i içeriyorsa ve herhangi bir doğal sayıyı içerdiğinde o doğal sayının ardılını da içerme özelliği varsa, o zaman bu topluluk gerçekte bütün doğal sayıları içerir.

Matematikçiler arasında doğal sayıların hâlâ sıfır ile mi yoksa bir ile mi başlaması gerektiği konusu tartışılmaktadır.

Karşılaştırınız: doğal sayılar, sayma sayıları

Taslak simgesiMatematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
"https://tr.wikipedia.org/w/index.php?title=Peano_aksiyomları&oldid=32548798" sayfasından alınmıştır
Kategoriler:
  • Matematik taslakları
  • Matematiksel aksiyomlar
  • Aritmetik
  • Mantık
  • Model teorisi
Gizli kategoriler:
  • Kaynakları olmayan maddeler Kasım 2023
  • Tüm taslak maddeler
  • Sayfa en son 19.40, 22 Nisan 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Peano aksiyomları
Konu ekle