Dosya:Black.Hole,Extremal.Kerr.Newman,Raytracing.png - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

Dosya:Black.Hole,Extremal.Kerr.Newman,Raytracing.png

Sayfa içeriği diğer dillerde desteklenmemektedir.
  • Dosya
  • Tartışma
  • Oku
  • Wikimedia Commons üzerinde gör
  • Yerel açıklama ekle
  • Yerel açıklama kaynağı ekle
Araçlar
Eylemler
  • Oku
  • Wikimedia Commons üzerinde gör
  • Yerel açıklama ekle
  • Yerel açıklama kaynağı ekle
Genel
  • Sayfaya bağlantılar
  • Basılmaya uygun görünüm
  • Sayfa bilgisi
  • Kısaltılmış URL'yi al
  • Karekodu indir
Diğer projelerde
Görünüm
Vikipedi, özgür ansiklopedi
  • Dosya
  • Dosya geçmişi
  • Dosya kullanımı
  • Küresel dosya kullanımı
  • Üstveri
Dosya:Black.Hole,Extremal.Kerr.Newman,Raytracing.png
Daha yüksek çözünürlüğe sahip sürüm bulunmamaktadır.
Black.Hole,Extremal.Kerr.Newman,Raytracing.png ((800 × 430 piksel, dosya boyutu: 262 KB, MIME tipi: image/png))
Bu dosya Wikimedia Commons'ta bulunmaktadır. Dosyanın açıklaması aşağıda gösterilmiştir.
Commons, serbest/özgür telifli medya dosyalarının bulundurulduğu depodur. Siz de yardım edebilirsiniz.
Bu dosya Wikimedia Commons'ta bulunmaktadır.

Özet

AçıklamaBlack.Hole,Extremal.Kerr.Newman,Raytracing.png
English: Extremal Kerr-Newman black hole with spin a/M=√½ and charge Q/M=√½, in natural units of G=K=c=1. Therefore a²+Q²=M². The observer is at r=50M and views the black hole from the equatorial plane (edge on). FOV: 77.4°×38.7°. The equations that were used to raytrace the image can be found here.
Tarih 10 Nisan 2018
Kaynak Yükleyenin kendi çalışması
Yazar Yukterez (Simon Tyran, Vienna). Source material for the Milky way background (also available on Commons): ESO/S.Brunier. Code for the relativistic raytracer: yukterez.net
Diğer sürümler
Naked singularity viewed from the equatorial plane
The same naked singularity viewed from 45°
The same naked singularity viewed from the top

Equations

Line-element in Boyer-Lindquist-coordinates:

d τ 2   =   ( 1 − 2 r − ℧ 2 Σ ) d t 2   −   Σ Δ   d r 2   −   Σ   d θ 2   −   χ Σ   sin 2 ⁡ θ   d ϕ 2   +   2   Λ Σ   d t   d ϕ {\displaystyle {\rm {d\tau ^{2}\ =\ \left(1-{\frac {2r-\mho ^{2}}{\Sigma }}\right)\mathrm {d} t^{2}\ -\ {\frac {\Sigma }{\Delta }}\ \mathrm {d} r^{2}\ -\ \Sigma \ d\theta ^{2}\ -\ {\frac {\chi }{\Sigma }}\ \sin ^{2}\theta \ d\phi ^{2}\ +\ 2\ {\frac {\Lambda }{\Sigma }}\ dt\ d\phi }}} {\displaystyle {\rm {d\tau ^{2}\ =\ \left(1-{\frac {2r-\mho ^{2}}{\Sigma }}\right)\mathrm {d} t^{2}\ -\ {\frac {\Sigma }{\Delta }}\ \mathrm {d} r^{2}\ -\ \Sigma \ d\theta ^{2}\ -\ {\frac {\chi }{\Sigma }}\ \sin ^{2}\theta \ d\phi ^{2}\ +\ 2\ {\frac {\Lambda }{\Sigma }}\ dt\ d\phi }}}

Shorthand terms:

Δ = r 2 − 2 r + a 2 + ℧ 2   ,   Σ = r 2 + a 2   cos 2 ⁡ θ   ,   χ = ( a 2 + r 2 ) 2 − a 2   sin 2 ⁡ θ   Δ   ,     Λ = a   ( 2 r − ℧ 2 )   sin 2 ⁡ θ {\displaystyle {\rm {\Delta =r^{2}-2r+a^{2}+\mho ^{2}\ ,\ \Sigma =r^{2}+a^{2}\ \cos ^{2}\theta \ ,\ \chi =(a^{2}+r^{2})^{2}-a^{2}\ \sin ^{2}\theta \ \Delta \ ,\ \ \Lambda =a\ (2r-\mho ^{2})\ \sin ^{2}\theta }}} {\displaystyle {\rm {\Delta =r^{2}-2r+a^{2}+\mho ^{2}\ ,\ \Sigma =r^{2}+a^{2}\ \cos ^{2}\theta \ ,\ \chi =(a^{2}+r^{2})^{2}-a^{2}\ \sin ^{2}\theta \ \Delta \ ,\ \ \Lambda =a\ (2r-\mho ^{2})\ \sin ^{2}\theta }}}

with the dimensionless spin parameter a=Jc/G/M² and the dimensionless electric charge parameter ℧=Qₑ/M·√(K/G). Here G=M=c=K=1 so that a=J und ℧=Qₑ, with lengths in GM/c² and times in GM/c³.

Co- and contravariant metric:

g μ ν = ( 1 − 2 r − ℧ 2 Σ 0 0 Λ Σ 0 − Σ Δ 0 0 0 0 − Σ 0 Λ Σ 0 0 − χ sin 2 ⁡ θ Σ   )   →   g μ ν = ( χ Δ Σ 0 0 − a ( ℧ 2 − 2 r ) Σ ( ℧ 2 − 2 r + Σ ) χ − a Λ 0 − Δ Σ 0 0 0 0 − 1 Σ 0 − a ( ℧ 2 − 2 r ) Σ ( ℧ 2 − 2 r + Σ ) χ − a Λ 0 0 − Δ − a 2 sin 2 ⁡ θ Δ Σ sin 2 ⁡ θ ) {\displaystyle {g_{\mu \nu }={\rm {\left({\begin{array}{cccc}{\rm {1-{\frac {2r-\mho ^{2}}{\Sigma }}}}&0&0&{\frac {\Lambda }{\Sigma }}\\0&{\rm {-{\frac {\Sigma }{\Delta }}}}&0&0\\0&0&{\rm {-\Sigma }}&0\\{\frac {\Lambda }{\Sigma }}&0&0&-{\frac {\chi \sin ^{2}\theta }{\Sigma }}\ \end{array}}\right)}}\ \to \ g^{\mu \nu }={\rm {\left({\begin{array}{cccc}{\rm {\frac {\chi }{\Delta \Sigma }}}&0&0&{\rm {-{\frac {a\left({\rm {\mho ^{2}-2r}}\right)\Sigma }{\rm {\left({\rm {\mho ^{2}-2r+\Sigma }}\right)\chi -a\Lambda }}}}}\\0&{\rm {-{\frac {\Delta }{\Sigma }}}}&0&0\\0&0&{\rm {-{\frac {1}{\Sigma }}}}&0\\{\rm {-{\frac {a\left({\rm {\mho ^{2}-2r}}\right)\Sigma }{\rm {\left({\rm {\mho ^{2}-2r+\Sigma }}\right)\chi -a\Lambda }}}}}&0&0&{\rm {-{\frac {\Delta -a^{2}\sin ^{2}\theta }{\Delta \Sigma \sin ^{2}\theta }}}}\\\end{array}}\right)}}}} {\displaystyle {g_{\mu \nu }={\rm {\left({\begin{array}{cccc}{\rm {1-{\frac {2r-\mho ^{2}}{\Sigma }}}}&0&0&{\frac {\Lambda }{\Sigma }}\\0&{\rm {-{\frac {\Sigma }{\Delta }}}}&0&0\\0&0&{\rm {-\Sigma }}&0\\{\frac {\Lambda }{\Sigma }}&0&0&-{\frac {\chi \sin ^{2}\theta }{\Sigma }}\ \end{array}}\right)}}\ \to \ g^{\mu \nu }={\rm {\left({\begin{array}{cccc}{\rm {\frac {\chi }{\Delta \Sigma }}}&0&0&{\rm {-{\frac {a\left({\rm {\mho ^{2}-2r}}\right)\Sigma }{\rm {\left({\rm {\mho ^{2}-2r+\Sigma }}\right)\chi -a\Lambda }}}}}\\0&{\rm {-{\frac {\Delta }{\Sigma }}}}&0&0\\0&0&{\rm {-{\frac {1}{\Sigma }}}}&0\\{\rm {-{\frac {a\left({\rm {\mho ^{2}-2r}}\right)\Sigma }{\rm {\left({\rm {\mho ^{2}-2r+\Sigma }}\right)\chi -a\Lambda }}}}}&0&0&{\rm {-{\frac {\Delta -a^{2}\sin ^{2}\theta }{\Delta \Sigma \sin ^{2}\theta }}}}\\\end{array}}\right)}}}}

Contravariant Maxwell tensor:

F μ ν = ( 0 − 4 ( a 2 + r 2 )   ℧   ( cos ⁡ ( 2 θ )   a 2 + a 2 − 2 r 2 ) ( cos ⁡ ( 2 θ )   a 2 + a 2 + 2 r 2 ) 3 − 8 a 2 r   ℧ sin ⁡ ( 2 θ ) ( cos ⁡ ( 2 θ )   a 2 + a 2 + 2 r 2 ) 3 0 4 ( a 2 + r 2 )   ℧   ( cos ⁡ ( 2 θ )   a 2 + a 2 − 2 r 2 ) ( cos ⁡ ( 2 θ )   a 2 + a 2 + 2 r 2 ) 3 0 0 a   ℧   ( a 2 cos 2 ⁡ θ − r 2 ) ( r 2 + a 2 cos 2 ⁡ θ ) 3 8 a 2 r   ℧ sin ⁡ ( 2 θ ) ( cos ⁡ ( 2 θ )   a 2 + a 2 + 2 r 2 ) 3 0 0 16 a   r   ℧ cot ⁡ θ ( cos ⁡ ( 2 θ )   a 2 + a 2 + 2 r 2 ) 3 0 a   ℧   ( r 2 − a 2 cos 2 ⁡ θ ) ( r 2 + a 2 cos 2 ⁡ θ ) 3 − 16 a   r   ℧ cot ⁡ θ ( cos ⁡ ( 2 θ )   a 2 + a 2 + 2 r 2 ) 3 0 ) {\displaystyle {\rm {F}}^{\mu \nu }=\left({\begin{array}{cccc}0&-{\frac {\rm {4(a^{2}+r^{2})\ \mho \ (\cos(2\theta )\ a^{2}+a^{2}-2r^{2})}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&-{\frac {\rm {8a^{2}r\ \mho \sin(2\theta )}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0\\{\frac {\rm {4(a^{2}+r^{2})\ \mho \ (\cos(2\theta )\ a^{2}+a^{2}-2r^{2})}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0&0&{\frac {a\ \mho \ (a^{2}\cos ^{2}\theta -r^{2})}{(r^{2}+a^{2}\cos ^{2}\theta )^{3}}}\\{\frac {\rm {8a^{2}r\ \mho \sin(2\theta )}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0&0&{\frac {\rm {16a\ r\ \mho \cot \theta }}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}\\0&{\frac {\rm {a\ \mho \ (r^{2}-a^{2}\cos ^{2}\theta )}}{\rm {(r^{2}+a^{2}\cos ^{2}\theta )^{3}}}}&-{\frac {\rm {16a\ r\ \mho \cot \theta }}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0\\\end{array}}\right)} {\displaystyle {\rm {F}}^{\mu \nu }=\left({\begin{array}{cccc}0&-{\frac {\rm {4(a^{2}+r^{2})\ \mho \ (\cos(2\theta )\ a^{2}+a^{2}-2r^{2})}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&-{\frac {\rm {8a^{2}r\ \mho \sin(2\theta )}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0\\{\frac {\rm {4(a^{2}+r^{2})\ \mho \ (\cos(2\theta )\ a^{2}+a^{2}-2r^{2})}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0&0&{\frac {a\ \mho \ (a^{2}\cos ^{2}\theta -r^{2})}{(r^{2}+a^{2}\cos ^{2}\theta )^{3}}}\\{\frac {\rm {8a^{2}r\ \mho \sin(2\theta )}}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0&0&{\frac {\rm {16a\ r\ \mho \cot \theta }}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}\\0&{\frac {\rm {a\ \mho \ (r^{2}-a^{2}\cos ^{2}\theta )}}{\rm {(r^{2}+a^{2}\cos ^{2}\theta )^{3}}}}&-{\frac {\rm {16a\ r\ \mho \cot \theta }}{\rm {(\cos(2\theta )\ a^{2}+a^{2}+2r^{2})^{3}}}}&0\\\end{array}}\right)}

The coordinate acceleration of a test-particle with the specific charge q is given by

x ¨ i = − ∑ j = 1 4 ∑ k = 1 4 x ˙ j   x ˙ k   Γ j k i + q   F i k   x ˙ j   g j k {\displaystyle {\rm {{\ddot {x}}^{i}=-\sum _{j=1}^{4}\sum _{k=1}^{4}{\dot {x}}^{j}\ {\dot {x}}^{k}\ \Gamma _{jk}^{i}+q\ {F^{ik}}\ {{\dot {x}}^{j}}}}\ {g_{\rm {jk}}}} {\displaystyle {\rm {{\ddot {x}}^{i}=-\sum _{j=1}^{4}\sum _{k=1}^{4}{\dot {x}}^{j}\ {\dot {x}}^{k}\ \Gamma _{jk}^{i}+q\ {F^{ik}}\ {{\dot {x}}^{j}}}}\ {g_{\rm {jk}}}}

with the Christoffel-symbols

Γ j k i = ∑ s = 1 4 g i s 2 ( ∂ g s j ∂ x k + ∂ g s k ∂ x j − ∂ g j k ∂ x s ) {\displaystyle \Gamma _{\rm {jk}}^{\rm {i}}=\sum _{\rm {s=1}}^{4}{\frac {g^{\rm {is}}}{2}}\left({\frac {\partial {g}_{\rm {sj}}}{\partial {\rm {x^{k}}}}}+{\frac {\partial {g}_{\rm {sk}}}{\partial {\rm {x^{j}}}}}-{\frac {\partial {g}_{\rm {jk}}}{\partial {\rm {x^{s}}}}}\right)} {\displaystyle \Gamma _{\rm {jk}}^{\rm {i}}=\sum _{\rm {s=1}}^{4}{\frac {g^{\rm {is}}}{2}}\left({\frac {\partial {g}_{\rm {sj}}}{\partial {\rm {x^{k}}}}}+{\frac {\partial {g}_{\rm {sk}}}{\partial {\rm {x^{j}}}}}-{\frac {\partial {g}_{\rm {jk}}}{\partial {\rm {x^{s}}}}}\right)}

So the second proper time derivatives are

t ¨ = − ( a 2   θ ˙   ( sin ⁡ ( 2 θ ) ( q   ℧   r + ( ℧ 2 − 2 r )   t ˙ ) − 2 a sin 3 ⁡ θ cos ⁡ θ   ( ℧ 2 − 2 r )   ϕ ˙ ) + {\displaystyle {\rm {{\ddot {t}}=-(a^{2}\ {\dot {\theta }}\ (\sin(2\theta )(q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})-2a\sin ^{3}\theta \cos \theta \ (\mho ^{2}-2r)\ {\dot {\phi }})+}}} {\displaystyle {\rm {{\ddot {t}}=-(a^{2}\ {\dot {\theta }}\ (\sin(2\theta )(q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})-2a\sin ^{3}\theta \cos \theta \ (\mho ^{2}-2r)\ {\dot {\phi }})+}}} ( r ˙   ( ( a 2 + r 2 ) ( a 2 cos 2 ⁡ θ   ( q ℧ − 2 t ˙ ) + r ( 2   ( r − ℧ 2 ) t ˙ − q   ℧   r ) ) + a sin 2 ⁡ θ   ϕ ˙   ( 2 a 4 cos 2 ⁡ θ + {\displaystyle {\rm {({\dot {r}}\ ((a^{2}+r^{2})(a^{2}\cos ^{2}\theta \ (q\mho -2{\dot {t}})+r(2\ (r-\mho ^{2}){\dot {t}}-q\ \mho \ r))+a\sin ^{2}\theta \ {\dot {\phi }}\ (2a^{4}\cos ^{2}\theta +}}} {\displaystyle {\rm {({\dot {r}}\ ((a^{2}+r^{2})(a^{2}\cos ^{2}\theta \ (q\mho -2{\dot {t}})+r(2\ (r-\mho ^{2}){\dot {t}}-q\ \mho \ r))+a\sin ^{2}\theta \ {\dot {\phi }}\ (2a^{4}\cos ^{2}\theta +}}} a 2 ℧ 2 r   ( cos ⁡ ( 2 θ ) + 3 ) − a 2 r 2 ( cos ⁡ ( 2 θ ) + 3 ) + 4 ℧ 2 r 3 − 6 r 4 ) ) ) / ( a 2 + ( r − 2 ) r + ℧ 2 ) ) / ( ( a 2 cos 2 ⁡ θ + r 2 ) 2 ) {\displaystyle {\rm {a^{2}\mho ^{2}r\ (\cos(2\theta )+3)-a^{2}r^{2}(\cos(2\theta )+3)+4\mho ^{2}r^{3}-6r^{4})))/(a^{2}+(r-2)r+\mho ^{2}))/((a^{2}\cos ^{2}\theta +r^{2})^{2})}}} {\displaystyle {\rm {a^{2}\mho ^{2}r\ (\cos(2\theta )+3)-a^{2}r^{2}(\cos(2\theta )+3)+4\mho ^{2}r^{3}-6r^{4})))/(a^{2}+(r-2)r+\mho ^{2}))/((a^{2}\cos ^{2}\theta +r^{2})^{2})}}}

for the time component,

r ¨ = ( a 2 θ ˙ sin ⁡ ( 2 θ )   r ˙ ) / ( a 2 cos 2 ⁡ θ + r 2 ) + r ˙ 2 ( ( r − 1 ) / ( a 2 + ( r − 2 )   r + ℧ 2 ) − r / ( a 2 cos 2 ⁡ θ + r 2 ) ) + {\displaystyle {\rm {{\ddot {r}}=(a^{2}{\dot {\theta }}\sin(2\theta )\ {\dot {r}})/(a^{2}\cos ^{2}\theta +r^{2})+{\dot {r}}^{2}((r-1)/(a^{2}+(r-2)\ r+\mho ^{2})-r/(a^{2}\cos ^{2}\theta +r^{2}))+}}} {\displaystyle {\rm {{\ddot {r}}=(a^{2}{\dot {\theta }}\sin(2\theta )\ {\dot {r}})/(a^{2}\cos ^{2}\theta +r^{2})+{\dot {r}}^{2}((r-1)/(a^{2}+(r-2)\ r+\mho ^{2})-r/(a^{2}\cos ^{2}\theta +r^{2}))+}}} ( ( a 2 + ( r − 2 )   r + ℧ 2 ) ( 8 a sin 2 ⁡ θ   ϕ ˙   ( a 2 cos 2 ⁡ θ   ( q   ℧ − 2 t ˙ ) + r ( 2 ( r − ℧ 2 ) t ˙ − q   ℧   r ) ) + {\displaystyle {\rm {((a^{2}+(r-2)\ r+\mho ^{2})(8a\sin ^{2}\theta \ {\dot {\phi }}\ (a^{2}\cos ^{2}\theta \ (q\ \mho -2{\dot {t}})+r(2(r-\mho ^{2}){\dot {t}}-q\ \mho \ r))+}}} {\displaystyle {\rm {((a^{2}+(r-2)\ r+\mho ^{2})(8a\sin ^{2}\theta \ {\dot {\phi }}\ (a^{2}\cos ^{2}\theta \ (q\ \mho -2{\dot {t}})+r(2(r-\mho ^{2}){\dot {t}}-q\ \mho \ r))+}}} 8 t ˙   ( a 2 cos 2 ⁡ θ   ( t ˙ − q   ℧ ) + r   ( q   ℧   r + ( ℧ 2 − r )   t ˙ ) ) + 8 r   θ ˙ 2   ( a 2 cos 2 ⁡ θ + r 2 ) 2 + {\displaystyle {\rm {8{\dot {t}}\ (a^{2}\cos ^{2}\theta \ ({\dot {t}}-q\ \mho )+r\ (q\ \mho \ r+(\mho ^{2}-r)\ {\dot {t}}))+8r\ {\dot {\theta }}^{2}\ (a^{2}\cos ^{2}\theta +r^{2})^{2}+}}} {\displaystyle {\rm {8{\dot {t}}\ (a^{2}\cos ^{2}\theta \ ({\dot {t}}-q\ \mho )+r\ (q\ \mho \ r+(\mho ^{2}-r)\ {\dot {t}}))+8r\ {\dot {\theta }}^{2}\ (a^{2}\cos ^{2}\theta +r^{2})^{2}+}}} sin 2 ⁡ θ   ϕ ˙ 2   ( 2 a 4 sin 2 ⁡ ( 2 θ ) + r   ( a 2 ( a 2 cos ⁡ ( 4 θ ) + 3 a 2 + 4   ( a − ℧ ) ( a + ℧ ) cos ⁡ ( 2 θ ) + 4 ℧ 2 ) + {\displaystyle {\rm {\sin ^{2}\theta \ {\dot {\phi }}^{2}\ (2a^{4}\sin ^{2}(2\theta )+r\ (a^{2}(a^{2}\cos(4\theta )+3a^{2}+4\ (a-\mho )(a+\mho )\cos(2\theta )+4\mho ^{2})+}}} {\displaystyle {\rm {\sin ^{2}\theta \ {\dot {\phi }}^{2}\ (2a^{4}\sin ^{2}(2\theta )+r\ (a^{2}(a^{2}\cos(4\theta )+3a^{2}+4\ (a-\mho )(a+\mho )\cos(2\theta )+4\mho ^{2})+}}} 8 r   ( − a 2 sin 2 ⁡ θ + 2 a 2 r cos 2 ⁡ θ + r 3 ) ) ) ) ) / ( 8   ( a 2 cos 2 ⁡ θ + r 2 ) 3 ) {\displaystyle {\rm {8r\ (-a^{2}\sin ^{2}\theta +2a^{2}r\cos ^{2}\theta +r^{3})))))/(8\ (a^{2}\cos ^{2}\theta +r^{2})^{3})}}} {\displaystyle {\rm {8r\ (-a^{2}\sin ^{2}\theta +2a^{2}r\cos ^{2}\theta +r^{3})))))/(8\ (a^{2}\cos ^{2}\theta +r^{2})^{3})}}}

for the radial component,

θ ¨ = − ( 2 r   θ ˙   r ˙ ) / ( a 2 cos 2 ⁡ θ + r 2 ) − ( a 2 sin ⁡ θ cos ⁡ θ   r ˙ 2 ) / ( ( a 2 + ( r − 2 )   r + {\displaystyle {\rm {{\ddot {\theta }}=-(2r\ {\dot {\theta }}\ {\dot {r}})/(a^{2}\cos ^{2}\theta +r^{2})-(a^{2}\sin \theta \cos \theta \ {\dot {r}}^{2})/((a^{2}+(r-2)\ r+}}} {\displaystyle {\rm {{\ddot {\theta }}=-(2r\ {\dot {\theta }}\ {\dot {r}})/(a^{2}\cos ^{2}\theta +r^{2})-(a^{2}\sin \theta \cos \theta \ {\dot {r}}^{2})/((a^{2}+(r-2)\ r+}}} ℧ 2 ) ( a 2 cos 2 ⁡ θ + r 2 ) ) + ( sin ⁡ ( 2 θ ) ( a 2 ( 8 θ ˙ 2 ( a 2 cos 2 ⁡ θ + r 2 ) 2 − 8 t ˙ ( 2 q   ℧   r + {\displaystyle {\rm {\mho ^{2})(a^{2}\cos ^{2}\theta +r^{2}))+(\sin(2\theta )(a^{2}(8{\dot {\theta }}^{2}(a^{2}\cos ^{2}\theta +r^{2})^{2}-8{\dot {t}}(2q\ \mho \ r+}}} {\displaystyle {\rm {\mho ^{2})(a^{2}\cos ^{2}\theta +r^{2}))+(\sin(2\theta )(a^{2}(8{\dot {\theta }}^{2}(a^{2}\cos ^{2}\theta +r^{2})^{2}-8{\dot {t}}(2q\ \mho \ r+}}} ( ℧ 2 − 2 r )   t ˙ ) ) + 16 a   ( a 2 + r 2 )   ϕ ˙ ( q   ℧   r + ( ℧ 2 − 2 r )   t ˙ ) + ϕ ˙ 2 ( 3 a 6 + 11 a 4 r 2 + 10 a 4 r − {\displaystyle {\rm {(\mho ^{2}-2r)\ {\dot {t}}))+16a\ (a^{2}+r^{2})\ {\dot {\phi }}(q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})+{\dot {\phi }}^{2}(3a^{6}+11a^{4}r^{2}+10a^{4}r-}}} {\displaystyle {\rm {(\mho ^{2}-2r)\ {\dot {t}}))+16a\ (a^{2}+r^{2})\ {\dot {\phi }}(q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})+{\dot {\phi }}^{2}(3a^{6}+11a^{4}r^{2}+10a^{4}r-}}} 5 a 4 ℧ 2 + 4 a 2 ( a 2 + 2 r 2 ) cos ⁡ ( 2 θ ) ( a 2 + ( r − 2 ) r + ℧ 2 ) − 8 a 2 ℧ 2 r 2 + 16 a 2 r 4 + 16 a 2 r 3 + a 4 cos ⁡ ( 4 θ ) ( a 2 + {\displaystyle {\rm {5a^{4}\mho ^{2}+4a^{2}(a^{2}+2r^{2})\cos(2\theta )(a^{2}+(r-2)r+\mho ^{2})-8a^{2}\mho ^{2}r^{2}+16a^{2}r^{4}+16a^{2}r^{3}+a^{4}\cos(4\theta )(a^{2}+}}} {\displaystyle {\rm {5a^{4}\mho ^{2}+4a^{2}(a^{2}+2r^{2})\cos(2\theta )(a^{2}+(r-2)r+\mho ^{2})-8a^{2}\mho ^{2}r^{2}+16a^{2}r^{4}+16a^{2}r^{3}+a^{4}\cos(4\theta )(a^{2}+}}} ( r − 2 ) r + ℧ 2 ) + 8 r 6 ) ) ) / ( 16 ( a 2 cos 2 ⁡ θ + r 2 ) 3 ) {\displaystyle {\rm {(r-2)r+\mho ^{2})+8r^{6})))/(16(a^{2}\cos ^{2}\theta +r^{2})^{3})}}} {\displaystyle {\rm {(r-2)r+\mho ^{2})+8r^{6})))/(16(a^{2}\cos ^{2}\theta +r^{2})^{3})}}}

the poloidial component and

ϕ ¨ = − ( ( r ˙ ( 4 a   q   ℧   ( a 2 cos 2 ⁡ θ − r 2 ) − 8 a   t ˙ ( a 2 cos 2 ⁡ θ + r   ( ℧ 2 − r ) ) + ϕ ˙   ( 2 a 4 sin 2 ⁡ ( 2 θ ) + {\displaystyle {\rm {{\ddot {\phi }}=-(({\dot {r}}(4a\ q\ \mho \ (a^{2}\cos ^{2}\theta -r^{2})-8a\ {\dot {t}}(a^{2}\cos ^{2}\theta +r\ (\mho ^{2}-r))+{\dot {\phi }}\ (2a^{4}\sin ^{2}(2\theta )+}}} {\displaystyle {\rm {{\ddot {\phi }}=-(({\dot {r}}(4a\ q\ \mho \ (a^{2}\cos ^{2}\theta -r^{2})-8a\ {\dot {t}}(a^{2}\cos ^{2}\theta +r\ (\mho ^{2}-r))+{\dot {\phi }}\ (2a^{4}\sin ^{2}(2\theta )+}}} 8 r 3 ( a 2 cos ⁡ ( 2 θ ) + a 2 + ℧ 2 ) + a 2 r   ( a 2 ( 4 cos ⁡ ( 2 θ ) + cos ⁡ ( 4 θ ) ) + 3 a 2 + 8 ℧ 2 ) − 4 a 2 r 2 ( cos ⁡ ( 2 θ ) + 3 ) + 8 r 5 − 16 r 4 ) ) ) / ( a 2 + {\displaystyle {\rm {8r^{3}(a^{2}\cos(2\theta )+a^{2}+\mho ^{2})+a^{2}r\ (a^{2}(4\cos(2\theta )+\cos(4\theta ))+3a^{2}+8\mho ^{2})-4a^{2}r^{2}(\cos(2\theta )+3)+8r^{5}-16r^{4})))/(a^{2}+}}} {\displaystyle {\rm {8r^{3}(a^{2}\cos(2\theta )+a^{2}+\mho ^{2})+a^{2}r\ (a^{2}(4\cos(2\theta )+\cos(4\theta ))+3a^{2}+8\mho ^{2})-4a^{2}r^{2}(\cos(2\theta )+3)+8r^{5}-16r^{4})))/(a^{2}+}}} ( r − 2 )   r + ℧ 2 ) + θ ˙   ( ϕ ˙   ( a 4 ( − sin ⁡ ( 4 θ ) ) − 2 a 2 sin ⁡ ( 2 θ ) ( 3 a 2 + 4 ( r − 1 ) r + 2 ℧ 2 ) + 8   ( a 2 + r 2 ) 2 cot ⁡ θ ) + {\displaystyle {\rm {(r-2)\ r+\mho ^{2})+{\dot {\theta }}\ ({\dot {\phi }}\ (a^{4}(-\sin(4\theta ))-2a^{2}\sin(2\theta )(3a^{2}+4(r-1)r+2\mho ^{2})+8\ (a^{2}+r^{2})^{2}\cot \theta )+}}} {\displaystyle {\rm {(r-2)\ r+\mho ^{2})+{\dot {\theta }}\ ({\dot {\phi }}\ (a^{4}(-\sin(4\theta ))-2a^{2}\sin(2\theta )(3a^{2}+4(r-1)r+2\mho ^{2})+8\ (a^{2}+r^{2})^{2}\cot \theta )+}}} 8 a cot ⁡ θ   ( q   ℧   r + ( ℧ 2 − 2 r )   t ˙ ) ) ) / ( 4 ( a 2 cos 2 ⁡ θ + r 2 ) 2 ) {\displaystyle {\rm {8a\cot \theta \ (q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})))/(4(a^{2}\cos ^{2}\theta +r^{2})^{2})}}} {\displaystyle {\rm {8a\cot \theta \ (q\ \mho \ r+(\mho ^{2}-2r)\ {\dot {t}})))/(4(a^{2}\cos ^{2}\theta +r^{2})^{2})}}}

for the axial component of the 4-acceleration. The total time dilation is

t ˙ {\displaystyle {\rm {\dot {t}}}} {\displaystyle {\rm {\dot {t}}}} = csc 2 ⁡ θ   ( L z ( a   Δ sin 2 ⁡ θ − a   ( a 2 + r 2 ) sin 2 ⁡ θ ) − q   ℧   r   ( a 2 + r 2 ) sin 2 ⁡ θ + E ( ( a 2 + r 2 ) 2 sin 2 ⁡ θ − a 2 Δ sin 4 ⁡ θ ) ) Δ Σ {\displaystyle {\rm {={\frac {\csc ^{2}\theta \ ({L_{z}}(a\ \Delta \sin ^{2}\theta -a\ (a^{2}+r^{2})\sin ^{2}\theta )-q\ \mho \ r\ (a^{2}+r^{2})\sin ^{2}\theta +E((a^{2}+r^{2})^{2}\sin ^{2}\theta -a^{2}\Delta \sin ^{4}\theta ))}{\Delta \Sigma }}}}} {\displaystyle {\rm {={\frac {\csc ^{2}\theta \ ({L_{z}}(a\ \Delta \sin ^{2}\theta -a\ (a^{2}+r^{2})\sin ^{2}\theta )-q\ \mho \ r\ (a^{2}+r^{2})\sin ^{2}\theta +E((a^{2}+r^{2})^{2}\sin ^{2}\theta -a^{2}\Delta \sin ^{4}\theta ))}{\Delta \Sigma }}}}} = a ( L z − a E sin 2 ⁡ θ ) + ( r 2 + a 2 ) P / Δ Σ {\displaystyle {\rm {={\frac {a(L_{z}-aE\sin ^{2}\theta )+(r^{2}+a^{2})P/\Delta }{\Sigma }}}}} {\displaystyle {\rm {={\frac {a(L_{z}-aE\sin ^{2}\theta )+(r^{2}+a^{2})P/\Delta }{\Sigma }}}}}

where the differentiation goes by the proper time τ for charged (q≠0) and neutral (q=0) particles (μ=-1, v<1), and for massless particles (μ=0, v=1) by the spatial affine parameter ŝ. The relation between the first proper time derivatives and the local three-velocity components relative to a ZAMO is

r ˙ = v r Δ Σ ( 1 − μ 2 v 2 ) = S i g n ( v r ) V r Σ                 θ ˙ = v θ Σ ( 1 − μ 2 v 2 ) = S i g n ( v θ ) V θ Σ {\displaystyle {\rm {{\dot {r}}={\frac {v_{r}{\sqrt {\Delta }}}{\sqrt {\Sigma (1-\mu ^{2}v^{2})}}}}}={\frac {{\rm {Sign}}({\rm {v_{r}){\sqrt {\rm {V_{r}}}}}}}{\Sigma }}\ \ \ \ \ \ \ \ {\rm {{\dot {\theta }}={\frac {v_{\theta }}{\sqrt {\Sigma (1-\mu ^{2}v^{2})}}}={\frac {\rm {Sign(v_{\theta }){\sqrt {\rm {V_{\theta }}}}}}{\Sigma }}}}} {\displaystyle {\rm {{\dot {r}}={\frac {v_{r}{\sqrt {\Delta }}}{\sqrt {\Sigma (1-\mu ^{2}v^{2})}}}}}={\frac {{\rm {Sign}}({\rm {v_{r}){\sqrt {\rm {V_{r}}}}}}}{\Sigma }}\ \ \ \ \ \ \ \ {\rm {{\dot {\theta }}={\frac {v_{\theta }}{\sqrt {\Sigma (1-\mu ^{2}v^{2})}}}={\frac {\rm {Sign(v_{\theta }){\sqrt {\rm {V_{\theta }}}}}}{\Sigma }}}}}

ϕ ˙ = a ( a 2 E − a L z − Δ E − q r ℧ + E r 2 ) + Δ L z csc 2 ⁡ θ Δ Σ {\displaystyle {\dot {\phi }}{\rm {={\frac {a\left(a^{2}E-aL_{z}-\Delta E-qr\mho +Er^{2}\right)+\Delta L_{z}\csc ^{2}\theta }{\Delta \Sigma }}}}} {\displaystyle {\dot {\phi }}{\rm {={\frac {a\left(a^{2}E-aL_{z}-\Delta E-qr\mho +Er^{2}\right)+\Delta L_{z}\csc ^{2}\theta }{\Delta \Sigma }}}}}

The local three-velocity in terms of the position and the constants of motion is

v = | − a 2 L z 2 Σ 2 ( ℧ 2 − 2 r ) 2 + 2 a L z Σ χ ( 2 r − ℧ 2 ) ( E Σ − q r ℧ ) + χ ( Δ Σ 3 − χ ( E Σ − q r ℧ ) 2 ) a L z Σ ( ℧ 2 − 2 r ) + χ ( E Σ − q r ℧ ) | {\displaystyle {\rm {v=\left|{\frac {\sqrt {-a^{2}L_{z}^{2}\Sigma ^{2}\left(\mho ^{2}-2r\right)^{2}+2aL_{z}\Sigma \chi \left(2r-\mho ^{2}\right)(E\Sigma -qr\mho )+\chi \left(\Delta \Sigma ^{3}-\chi (E\Sigma -qr\mho )^{2}\right)}}{aL_{z}\Sigma \left(\mho ^{2}-2r\right)+\chi (E\Sigma -qr\mho )}}\right|}}} {\displaystyle {\rm {v=\left|{\frac {\sqrt {-a^{2}L_{z}^{2}\Sigma ^{2}\left(\mho ^{2}-2r\right)^{2}+2aL_{z}\Sigma \chi \left(2r-\mho ^{2}\right)(E\Sigma -qr\mho )+\chi \left(\Delta \Sigma ^{3}-\chi (E\Sigma -qr\mho )^{2}\right)}}{aL_{z}\Sigma \left(\mho ^{2}-2r\right)+\chi (E\Sigma -qr\mho )}}\right|}}}

which reduces to

v = χ   ( E − L z   Ω ) 2 − Δ   Σ χ   ( E − L z   Ω ) 2 = t ˙ 2 − ς 2 t ˙ {\displaystyle {\rm {v={\sqrt {\frac {\chi \ (E-L_{z}\ \Omega )^{2}-\Delta \ \Sigma }{\chi \ (E-L_{z}\ \Omega )^{2}}}}={\frac {\sqrt {{\dot {t}}^{2}-\varsigma ^{2}}}{\dot {t}}}}}} {\displaystyle {\rm {v={\sqrt {\frac {\chi \ (E-L_{z}\ \Omega )^{2}-\Delta \ \Sigma }{\chi \ (E-L_{z}\ \Omega )^{2}}}}={\frac {\sqrt {{\dot {t}}^{2}-\varsigma ^{2}}}{\dot {t}}}}}}

if the charge of the test particle is q=0. The escape velocity of a charged particle with zero orbital angular momentum is

v e s c = | a 4 cos 4 ⁡ θ ( Δ Σ − χ ) + 2 a 2 r cos 2 ⁡ θ ( q χ ℧ + Δ r Σ − r χ ) + r 2 ( − q 2 χ ℧ 2 + 2 q r χ ℧ + r 2 ( Δ Σ − χ ) ) χ ( a 2 cos 2 ⁡ θ + r ( r − q ℧ ) ) | {\displaystyle {\rm {v_{esc}=\left|{\frac {\sqrt {a^{4}\cos ^{4}\theta (\Delta \Sigma -\chi )+2a^{2}r\cos ^{2}\theta (q\chi \mho +\Delta r\Sigma -r\chi )+r^{2}\left(-q^{2}\chi \mho ^{2}+2qr\chi \mho +r^{2}(\Delta \Sigma -\chi )\right)}}{{\sqrt {\chi }}\left(a^{2}\cos ^{2}\theta +r(r-q\mho )\right)}}\right|}}} {\displaystyle {\rm {v_{esc}=\left|{\frac {\sqrt {a^{4}\cos ^{4}\theta (\Delta \Sigma -\chi )+2a^{2}r\cos ^{2}\theta (q\chi \mho +\Delta r\Sigma -r\chi )+r^{2}\left(-q^{2}\chi \mho ^{2}+2qr\chi \mho +r^{2}(\Delta \Sigma -\chi )\right)}}{{\sqrt {\chi }}\left(a^{2}\cos ^{2}\theta +r(r-q\mho )\right)}}\right|}}}

which for a neutral test particle with q=0 reduces to

v e s c = ς 2 − 1 ς {\displaystyle {\rm {v_{esc}}}={\frac {\sqrt {\varsigma ^{2}-1}}{\varsigma }}} {\displaystyle {\rm {v_{esc}}}={\frac {\sqrt {\varsigma ^{2}-1}}{\varsigma }}}

with the gravitational time dilation of a locally stationary ZAMO

ς = d t d τ = | g t t | = χ Δ   Σ {\displaystyle \varsigma ={\frac {\rm {dt}}{\rm {d\tau }}}={\sqrt {|g^{\rm {tt}}|}}={\sqrt {\frac {\chi }{\Delta \ \Sigma }}}} {\displaystyle \varsigma ={\frac {\rm {dt}}{\rm {d\tau }}}={\sqrt {|g^{\rm {tt}}|}}={\sqrt {\frac {\chi }{\Delta \ \Sigma }}}}

which is infinite at the horizon. The time dilation of a globally stationary particle (with respect to the fixed stars) is

σ = d t d τ = | 1 / g t t | = 1 1 − 2 r − ℧ 2 Σ {\displaystyle \sigma ={\frac {\rm {dt}}{\rm {d\tau }}}={\sqrt {|1/g_{\rm {tt}}|}}={\frac {1}{\sqrt {1-{\frac {\rm {2r-\mho ^{2}}}{\Sigma }}}}}} {\displaystyle \sigma ={\frac {\rm {dt}}{\rm {d\tau }}}={\sqrt {|1/g_{\rm {tt}}|}}={\frac {1}{\sqrt {1-{\frac {\rm {2r-\mho ^{2}}}{\Sigma }}}}}}

which is infinite at the ergosphere. The Frame-Dragging angular velocity observed at infinity is

ω = | g t ϕ g ϕ ϕ | = a ( 2 r − ℧ 2 ) / χ {\displaystyle \omega =\left|{\frac {g_{\rm {t\phi }}}{g_{\phi \phi }}}\right|={\rm {a\left(2r-\mho ^{2}\right)/\chi }}} {\displaystyle \omega =\left|{\frac {g_{\rm {t\phi }}}{g_{\phi \phi }}}\right|={\rm {a\left(2r-\mho ^{2}\right)/\chi }}}

The local frame dragging velocity with respect to the fixed stars is therefore

v ϕ = g t ϕ   g t ϕ = 1 − g t t   g t t = | g t ϕ g ϕ ϕ g t t   g ϕ ϕ | = ω R ¯ ϕ ς {\displaystyle v_{\phi }={\sqrt {g_{\rm {t\phi }}\ g^{\rm {t\phi }}}}={\sqrt {1-g_{\rm {tt}}\ g^{\rm {tt}}}}=|{\frac {g_{\rm {t\phi }}}{g_{\rm {\phi \phi }}}}{\sqrt {g^{\rm {tt}}}}\ {\sqrt {g_{\rm {\phi \phi }}}}|=\omega {\bar {\rm {R}}}_{\phi }\varsigma } {\displaystyle v_{\phi }={\sqrt {g_{\rm {t\phi }}\ g^{\rm {t\phi }}}}={\sqrt {1-g_{\rm {tt}}\ g^{\rm {tt}}}}=|{\frac {g_{\rm {t\phi }}}{g_{\rm {\phi \phi }}}}{\sqrt {g^{\rm {tt}}}}\ {\sqrt {g_{\rm {\phi \phi }}}}|=\omega {\bar {\rm {R}}}_{\phi }\varsigma }

which is c at the ergosphere. The axial radius of gyration is

R ¯ ϕ = | g ϕ ϕ | = χ Σ   sin ⁡ θ {\displaystyle {\bar {\rm {R}}}_{\phi }={\sqrt {|g_{\phi \phi }|}}={\sqrt {\frac {\chi }{\Sigma }}}\ \sin \theta } {\displaystyle {\bar {\rm {R}}}_{\phi }={\sqrt {|g_{\phi \phi }|}}={\sqrt {\frac {\chi }{\Sigma }}}\ \sin \theta }

The 3 conserved quantities are 1) the total energy:

E = g t t   t ˙ + g t ϕ   ϕ ˙ + q   A t = t ˙ ( 1 − 2 r − ℧ 2 Σ ) + ϕ ˙ a sin 2 ⁡ θ ( 2 r − ℧ 2 ) Σ + ℧   q   r Σ = Δ   Σ ( 1 − μ 2 v 2 )   χ + ω   L z + ℧   q   r Σ {\displaystyle {{\rm {E}}=g_{\rm {tt}}\ {\dot {\rm {t}}}+g_{\rm {t\phi }}\ {\rm {{\dot {\phi }}+{\rm {q\ A_{t}={\dot {t}}\left(1-{\frac {2r-\mho ^{2}}{\Sigma }}\right)+{\dot {\phi }}{\frac {a\sin ^{2}\theta \left(2r-\mho ^{2}\right)}{\Sigma }}+{\frac {\mho \ q\ r}{\Sigma }}={\rm {{\sqrt {\frac {\Delta \ \Sigma }{(1-\mu ^{2}v^{2})\ \chi }}}+\omega \ L_{z}+{\frac {\mho \ q\ r}{\Sigma }}}}}}}}}} {\displaystyle {{\rm {E}}=g_{\rm {tt}}\ {\dot {\rm {t}}}+g_{\rm {t\phi }}\ {\rm {{\dot {\phi }}+{\rm {q\ A_{t}={\dot {t}}\left(1-{\frac {2r-\mho ^{2}}{\Sigma }}\right)+{\dot {\phi }}{\frac {a\sin ^{2}\theta \left(2r-\mho ^{2}\right)}{\Sigma }}+{\frac {\mho \ q\ r}{\Sigma }}={\rm {{\sqrt {\frac {\Delta \ \Sigma }{(1-\mu ^{2}v^{2})\ \chi }}}+\omega \ L_{z}+{\frac {\mho \ q\ r}{\Sigma }}}}}}}}}}

2) the axial angular momentum:

L z = − g ϕ ϕ   ϕ ˙ − g t ϕ   t ˙ − q   A ϕ = ϕ ˙   χ sin 2 ⁡ θ Σ − t ˙   a   sin 2 ⁡ θ ( 2 r − Q 2 ) Σ + a   r   ℧   q   sin 2 ⁡ θ Σ = v ϕ   R ¯ ϕ 1 − μ 2   v 2 + ( 1 − μ 2 v 2 )   a   r   ℧   q   sin 2 ⁡ θ Σ {\displaystyle {\rm {L_{z}}}=-g_{\phi \phi }\ {\dot {\phi }}-g_{\rm {t\phi }}\ {\rm {{\dot {t}}-q\ A_{\phi }={\rm {{\frac {{\dot {\phi }}\ \chi \sin ^{2}\theta }{\Sigma }}-{\frac {{\dot {t}}\ a\ \sin ^{2}\theta \left(2r-Q^{2}\right)}{\Sigma }}+{\frac {a\ r\ \mho \ q\ \sin ^{2}\theta }{\Sigma }}}}={\frac {v_{\phi }\ {\bar {R}}_{\phi }}{\sqrt {1-\mu ^{2}\ v^{2}}}}+{\frac {(1-\mu ^{2}v^{2})\ a\ r\ \mho \ q\ \sin ^{2}\theta }{\Sigma }}}}} {\displaystyle {\rm {L_{z}}}=-g_{\phi \phi }\ {\dot {\phi }}-g_{\rm {t\phi }}\ {\rm {{\dot {t}}-q\ A_{\phi }={\rm {{\frac {{\dot {\phi }}\ \chi \sin ^{2}\theta }{\Sigma }}-{\frac {{\dot {t}}\ a\ \sin ^{2}\theta \left(2r-Q^{2}\right)}{\Sigma }}+{\frac {a\ r\ \mho \ q\ \sin ^{2}\theta }{\Sigma }}}}={\frac {v_{\phi }\ {\bar {R}}_{\phi }}{\sqrt {1-\mu ^{2}\ v^{2}}}}+{\frac {(1-\mu ^{2}v^{2})\ a\ r\ \mho \ q\ \sin ^{2}\theta }{\Sigma }}}}}

3) the Carter constant:

Q = v θ 2   Σ 1 − μ 2 v 2 + cos 2 ⁡ θ ( a 2 ( μ 2 − E 2 ) + L z 2 sin 2 ⁡ θ ) {\displaystyle {\rm {Q={\frac {{v_{\theta }}^{2}\ \Sigma }{1-\mu ^{2}v^{2}}}+\cos ^{2}\theta \left(a^{2}(\mu ^{2}-E^{2})+{\frac {L_{z}^{2}}{\sin ^{2}\theta }}\right)}}} {\displaystyle {\rm {Q={\frac {{v_{\theta }}^{2}\ \Sigma }{1-\mu ^{2}v^{2}}}+\cos ^{2}\theta \left(a^{2}(\mu ^{2}-E^{2})+{\frac {L_{z}^{2}}{\sin ^{2}\theta }}\right)}}}

The effective radial potential whose zero roots define the turning points is

V r = P 2 − Δ ( ( L z − a E ) 2 + Q + μ 2 r 2 ) {\displaystyle {\rm {V_{r}=P^{2}-\Delta \left((L_{z}-aE)^{2}+Q+\mu ^{2}r^{2}\right)}}} {\displaystyle {\rm {V_{r}=P^{2}-\Delta \left((L_{z}-aE)^{2}+Q+\mu ^{2}r^{2}\right)}}}

and the poloidial potential

V θ = v θ 2   Σ 1 − μ 2 v 2 = Q − cos 2 ⁡ θ ( a 2 ( μ 2 − E 2 ) + L z 2 sin 2 ⁡ θ ) {\displaystyle {\rm {V_{\theta }={\frac {{v_{\theta }}^{2}\ \Sigma }{1-\mu ^{2}v^{2}}}=Q-\cos ^{2}\theta \left(a^{2}\left(\mu ^{2}-E^{2}\right)+{\frac {\rm {L_{z}^{2}}}{\sin ^{2}\theta }}\right)}}} {\displaystyle {\rm {V_{\theta }={\frac {{v_{\theta }}^{2}\ \Sigma }{1-\mu ^{2}v^{2}}}=Q-\cos ^{2}\theta \left(a^{2}\left(\mu ^{2}-E^{2}\right)+{\frac {\rm {L_{z}^{2}}}{\sin ^{2}\theta }}\right)}}}

with the parameter

P = E ( a 2 + r 2 ) − a L z + q r ℧ {\displaystyle {\rm {P=E\left(a^{2}+r^{2}\right)-aL_{z}+qr\mho }}} {\displaystyle {\rm {P=E\left(a^{2}+r^{2}\right)-aL_{z}+qr\mho }}}

The azimutal and latitudinal impact parameters are

b ϕ = L z E   ,     b θ = Q E 2 {\displaystyle {\rm {b_{\phi }={\frac {L_{z}}{E}}\ ,\ \ b_{\theta }={\sqrt {\frac {Q}{E^{2}}}}}}} {\displaystyle {\rm {b_{\phi }={\frac {L_{z}}{E}}\ ,\ \ b_{\theta }={\sqrt {\frac {Q}{E^{2}}}}}}}

The horizons and ergospheres have the Boyer-Lindquist-radius

r H ± = 1 ± 1 − a 2 − ℧ 2   ,     r E ± = 1 ± 1 − a 2 cos 2 ⁡ θ − ℧ 2 {\displaystyle {\rm {r_{H}^{\pm }=1\pm {\sqrt {1-a^{2}-\mho ^{2}}}}}\ ,\ \ {\rm {r_{E}^{\pm }=1\pm {\sqrt {\rm {1-a^{2}\cos ^{2}\theta -\mho ^{2}}}}}}} {\displaystyle {\rm {r_{H}^{\pm }=1\pm {\sqrt {1-a^{2}-\mho ^{2}}}}}\ ,\ \ {\rm {r_{E}^{\pm }=1\pm {\sqrt {\rm {1-a^{2}\cos ^{2}\theta -\mho ^{2}}}}}}}

In this article the total mass equivalent M, which also contains the rotational and the electrical field energy, is set to 1; the relation of M with the irreducible mass is

M i r r = 2 M 2 − ℧ 2 + 2 M M 2 − ℧ 2 − a 2 2   →   M = 16 M i r r 4 + 8 M i r r 2   ℧ 2 + ℧ 4 16 M i r r 2 − 4 a 2 {\displaystyle {\rm {M_{\rm {irr}}={\frac {\sqrt {2M^{2}-\mho ^{2}+2M{\sqrt {M^{2}-\mho ^{2}-a^{2}}}}}{2}}\ \to \ M={\sqrt {\frac {16M_{\rm {irr}}^{4}+8M_{\rm {irr}}^{2}\ \mho ^{2}+\mho ^{4}}{16M_{\rm {irr}}^{2}-4a^{2}}}}}}} {\displaystyle {\rm {M_{\rm {irr}}={\frac {\sqrt {2M^{2}-\mho ^{2}+2M{\sqrt {M^{2}-\mho ^{2}-a^{2}}}}}{2}}\ \to \ M={\sqrt {\frac {16M_{\rm {irr}}^{4}+8M_{\rm {irr}}^{2}\ \mho ^{2}+\mho ^{4}}{16M_{\rm {irr}}^{2}-4a^{2}}}}}}}

where a is in units of M.

Lisanslama

Ben, bu işin telif sahibi, burada işi aşağıdaki lisans altında yayımlıyorum:
w:tr:Creative Commons
atıf benzer paylaşım
Bu dosya, Creative Commons Atıf-Benzer Paylaşım 4.0 Uluslararası lisansı ile lisanslanmıştır.
Şu seçeneklerde özgürsünüz:
  • paylaşım – eser paylaşımı, dağıtımı ve iletimi
  • içeriği değiştirip uyarlama – eser adaptasyonu
Aşağıdaki koşullar geçerli olacaktır:
  • atıf – Esere yazar veya lisans sahibi tarafından belirtilen (ancak sizi ya da eseri kullanımınızı desteklediklerini ileri sürmeyecek bir) şekilde atıfta bulunmalısınız.
  • benzer paylaşım – Maddeyi yeniden düzenler, dönüştürür veya inşa ederseniz, katkılarınızı özgünüyle aynı veya uyumlu lisans altında dağıtmanız gerekir.
https://creativecommons.org/licenses/by-sa/4.0CC BY-SA 4.0 Creative Commons Attribution-Share Alike 4.0 truetrue

Altyazılar

Bu dosyanın temsil ettiği şeyin tek satırlık açıklamasını ekleyin.
spinning and charged black hole
rotierendes und geladenes schwarzes Loch

Bu dosyada gösterilen öğeler

betimlenen

telif hakkı durumu

telif hakkı alınmış

telif hakkı lisansı

Creative Commons Atıf-BenzerPaylaşım 4.0 Uluslararası

kuruluşu

10 Nisan 2018

dosya kaynağı

yükleyicinin orijinal eseri

ortam türü

image/png

sağlama toplamı

a203269c7f3ed97e2242933c91863991d72e80c6

tespit yöntemi: SHA-1

dosya boyutu

268.527 bayt

boyu

430 piksel

genişliği

800 piksel

Dosya geçmişi

Dosyanın herhangi bir zamandaki hâli için ilgili tarih/saat kısmına tıklayın.

Tarih/SaatKüçük resimBoyutlarKullanıcıYorum
güncel02.00, 21 Nisan 201802.00, 21 Nisan 2018 tarihindeki sürümün küçültülmüş hâli800 × 430 (262 KB)Yukterezdisplay the distance and angle of view in the right upper corner
20.13, 11 Nisan 201820.13, 11 Nisan 2018 tarihindeki sürümün küçültülmüş hâli800 × 430 (262 KB)Yukterezreduced width to 800px to avoid rescaling
19.59, 11 Nisan 201819.59, 11 Nisan 2018 tarihindeki sürümün küçültülmüş hâli860 × 430 (285 KB)YukterezUser created page with UploadWizard

Dosya kullanımı

Bu görüntü dosyasına bağlanan sayfa yok.

Küresel dosya kullanımı

Aşağıdaki diğer vikiler bu dosyayı kullanmaktadır:

  • ar.wikipedia.org üzerinde kullanımı
    • تفرد مجرد
  • ca.wikipedia.org üzerinde kullanımı
    • Singularitat nua
  • en.wikipedia.org üzerinde kullanımı
    • Naked singularity
    • User:Yukterez
  • hu.wikipedia.org üzerinde kullanımı
    • Meztelen szingularitás
  • meta.wikimedia.org üzerinde kullanımı
    • User:Yukterez
  • ro.wikipedia.org üzerinde kullanımı
    • Singularitate goală
  • uk.wikipedia.org üzerinde kullanımı
    • Гола сингулярність

Üstveri

Bu dosyada, muhtemelen fotoğraf makinesi ya da tarayıcı tarafından eklenmiş ek bilgiler mevcuttur. Eğer dosyada sonradan değişiklik yapıldıysa, bazı bilgiler yeni değişikliğe göre eski kalmış olabilir.

Kullanılan yazılım
  • Adobe ImageReady
"https://tr.wikipedia.org/wiki/Dosya:Black.Hole,Extremal.Kerr.Newman,Raytracing.png" sayfasından alınmıştır
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Dosya:Black.Hole,Extremal.Kerr.Newman,Raytracing.png
Konu ekle