Dosya:Birthdaymatch.svg - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

Dosya:Birthdaymatch.svg

Sayfa içeriği diğer dillerde desteklenmemektedir.
  • Dosya
  • Tartışma
  • Oku
  • Wikimedia Commons üzerinde gör
  • Yerel açıklama ekle
  • Yerel açıklama kaynağı ekle
Araçlar
Eylemler
  • Oku
  • Wikimedia Commons üzerinde gör
  • Yerel açıklama ekle
  • Yerel açıklama kaynağı ekle
Genel
  • Sayfaya bağlantılar
  • Basılmaya uygun görünüm
  • Sayfa bilgisi
  • Kısaltılmış URL'yi al
  • Karekodu indir
Diğer projelerde
Görünüm
Vikipedi, özgür ansiklopedi
  • Dosya
  • Dosya geçmişi
  • Dosya kullanımı
  • Küresel dosya kullanımı
  • Üstveri
Dosya:Birthdaymatch.svg
Bu SVG dosyasının PNG önizlemesinin boyutu: 720 × 540 piksel. Diğer çözünürlükler: 320 × 240 piksel | 640 × 480 piksel | 1.024 × 768 piksel | 1.280 × 960 piksel | 2.560 × 1.920 piksel.
Tam çözünürlük (SVG dosyası, sözde 720 × 540 piksel, dosya boyutu: 291 KB)
Bu dosya Wikimedia Commons'ta bulunmaktadır. Dosyanın açıklaması aşağıda gösterilmiştir.
Commons, serbest/özgür telifli medya dosyalarının bulundurulduğu depodur. Siz de yardım edebilirsiniz.
Bu dosya Wikimedia Commons'ta bulunmaktadır.

Özet

AçıklamaBirthdaymatch.svg
English: In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are 366 possible birthdays, including February 29). However, 99% probability is reached with just 57 people, and 50% probability with 23 people. These conclusions are based on the assumption that each day of the year (except February 29) is equally probable for a birthday. The mathematics behind this problem led to a well-known cryptographic attack called the birthday attack, which uses this probabilistic model to reduce the complexity of cracking a hash function.
Tarih 10 Mart 2013, 20:34:42
Kaynak Yükleyenin kendi çalışması
Yazar Guillaume Jacquenot
SVG gelişimi
InfoField
 Bu SVG'nin kaynak kodu 243 hatalardan geçersiz durumdadır.
 Bu W3C-geçersiz vektörel grafik Matplotlib ile oluşturuldu.
Kaynak kodu
InfoField

Python code

# -*- coding: utf-8 -*-
#
# Script to generate in English and French, graphs for the
# birthday problem.
# More precisely, it generates two SVG files representing the
# probability of no match of two identical birthday one the same
# wrt the number of person in the considered group.
#
# **************************************************************
# http://en.wikipedia.org/wiki/Birthday_problem
# From Wikipedia, the free encyclopedia:
# In probability theory, the birthday problem or birthday
# paradox concerns the probability that, in a set of n
# randomly chosen people, some pair of them will have the
# same birthday. By the pigeonhole principle, the probability
# reaches 100% when the number of people reaches 367
# (since there are 366 possible birthdays, including February
# 29). However, 99% probability is reached with just 57 people,
# and 50% probability with 23 people. These conclusions are
# based on the assumption that each day of the year (except
# February 29) is equally probable for a birthday.
#
# The mathematics behind this problem led to a well-known
# cryptographic attack called the birthday attack, which
# uses this probabilistic model to reduce the complexity
# of cracking a hash function.
#
# Text under the
# Creative Commons Attribution-ShareAlike License
# **************************************************************
#
# Implementation:
# To ensure numerical accuracy, one evaluates the log10 of the
# probabibity of no match. This allows to converts the
# probability formula from a product formula to a sum formula.
#
#
# Guillaume Jacquenot
# 2013/03/10

import matplotlib.pyplot as plt
from matplotlib import rc
rc('font',**{'family':'serif','serif':['Palatino'],'size':14})
rc('text', usetex=True)
import numpy as np

def BirthdaymatchComputationLog10():
    '''
        This function evaluates the log10 probability of no
        match for the birthday paradox.
        This ensures no approximation on the result.
        $\log _{10} \left( {\bar p(n)} \right) =
         \sum\limits_{i = 365 + 1 - n}^{365}
         {\log _{10} \left( i \right)}
         - n\log _{10} \left( {365} \right)$
    '''
    n=np.arange(1,365)
    nR=np.arange(365,1,-1)
    p=np.cumsum(np.log10(nR))-n*np.log10(365)
    return n,p

def BirthdaymatchGenerateTitle(logTitle=False):
    if logTitle:
        title='$\\log _{10} \\left( {\\bar p(n)} \\right)\
               = \\sum\\limits_{i = 365 + 1 - n}^{365}\
                 {\\log _{10} \\left( i \\right)}\
                 - n\\log _{10} \\left( {365} \\right)$'
    else:
        title='$\\bar p(n) = \\frac{365!}{365^n\
                    \\left( {365 - n} \\right)!}$'
    return title

def Birthdaymatch(\
        labels={'xlabel':'Number of people',\
                'ylabel':'Probability of no match',\
                'title':'Birthday paradox'},\
        outputFilename = r'Birthdaymatch.svg'):
    n,p = BirthdaymatchComputationLog10()
    fig, ax = plt.subplots()
    plt.plot(n,p,c='k', linestyle='-')
    plt.grid(True, ls='-', c='#a0a0a0')
    plt.xlabel(labels['xlabel'])
    plt.ylabel(labels['ylabel'])
    plt.title(labels['title']+' - '+BirthdaymatchGenerateTitle())
    fig.canvas.draw()
    labels = [item.get_text() for item in ax.get_yticklabels()]
    labels = [label[1:] if label.startswith('$') else label for label in labels]
    labels = [label[0:-1] if label.endswith('$') else label for label in labels]
    labels = ['$10^{'+label+'}$' for label in labels]
    ax.set_yticklabels(labels)
    plt.savefig(outputFilename)

Birthdaymatch()
Birthdaymatch(\
    labels={'xlabel':u"Nombre de personnes",\
            'ylabel':u"Probabilit\\'e de non correspondance",\
            'title':u"Paradoxe des anniversaires"},\
    outputFilename = r'Birthdaymatch_FR.svg')

Lisanslama

Ben, bu işin telif sahibi, burada işi aşağıdaki lisans altında yayımlıyorum:
w:tr:Creative Commons
atıf benzer paylaşım
Bu dosya, Creative Commons Atıf-Benzer Paylaşım 3.0 Taşınmamış lisansı ile lisanslanmıştır
Şu seçeneklerde özgürsünüz:
  • paylaşım – eser paylaşımı, dağıtımı ve iletimi
  • içeriği değiştirip uyarlama – eser adaptasyonu
Aşağıdaki koşullar geçerli olacaktır:
  • atıf – Esere yazar veya lisans sahibi tarafından belirtilen (ancak sizi ya da eseri kullanımınızı desteklediklerini ileri sürmeyecek bir) şekilde atıfta bulunmalısınız.
  • benzer paylaşım – Maddeyi yeniden düzenler, dönüştürür veya inşa ederseniz, katkılarınızı özgünüyle aynı veya uyumlu lisans altında dağıtmanız gerekir.
https://creativecommons.org/licenses/by-sa/3.0CC BY-SA 3.0 Creative Commons Attribution-Share Alike 3.0 truetrue

Altyazılar

Bu dosyanın temsil ettiği şeyin tek satırlık açıklamasını ekleyin.

Bu dosyada gösterilen öğeler

betimlenen

telif hakkı durumu

telif hakkı alınmış

telif hakkı lisansı

Creative Commons Atıf-AynıLisanslaPaylaş 3.0 Yerelleştirilmemiş

kuruluşu

10 Mart 2013

dosya kaynağı

yükleyicinin orijinal eseri

ortam türü

image/svg+xml

sağlama toplamı

68b9c96e2a245296ec08bbfe7963536985e6cf9e

tespit yöntemi: SHA-1

dosya boyutu

297.936 bayt

boyu

540 piksel

genişliği

720 piksel

Dosya geçmişi

Dosyanın herhangi bir zamandaki hâli için ilgili tarih/saat kısmına tıklayın.

Tarih/SaatKüçük resimBoyutlarKullanıcıYorum
güncel19.39, 10 Mart 201319.39, 10 Mart 2013 tarihindeki sürümün küçültülmüş hâli720 × 540 (291 KB)GjacquenotUser created page with UploadWizard

Dosya kullanımı

Bu görüntü dosyasına bağlantısı olan sayfalar:

  • Doğum günü problemi

Küresel dosya kullanımı

Aşağıdaki diğer vikiler bu dosyayı kullanmaktadır:

  • en.wikipedia.org üzerinde kullanımı
    • Birthday problem
    • User:Physikerwelt/test/Birthday problem
  • fa.wikipedia.org üzerinde kullanımı
    • مسئله تاریخ تولد
  • fr.wikisource.org üzerinde kullanımı
    • Wikisource:Scriptorium/2013
    • Wikisource:Scriptorium/Novembre 2013
  • ml.wikipedia.org üzerinde kullanımı
    • ജന്മദിനപ്രശ്നം
  • sq.wikipedia.org üzerinde kullanımı
    • Problemi i ditëlindjes
  • th.wikipedia.org üzerinde kullanımı
    • ปัญหาวันเกิด

Üstveri

Bu dosyada, muhtemelen fotoğraf makinesi ya da tarayıcı tarafından eklenmiş ek bilgiler mevcuttur. Eğer dosyada sonradan değişiklik yapıldıysa, bazı bilgiler yeni değişikliğe göre eski kalmış olabilir.

Genişlik576pt
Yükseklik432pt
"https://tr.wikipedia.org/wiki/Dosya:Birthdaymatch.svg" sayfasından alınmıştır
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Dosya:Birthdaymatch.svg
Konu ekle