Sekiz vezir bulmacası - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tarihi
  • 2 Çözüm yöntemi
    • 2.1 Bazı örnekler
  • 3 Çözümleri
  • 4 Değişik n değerleri için çözüm sayıları
  • 5 Kaynakça
  • 6 Dış bağlantılar
    • 6.1 Çözüm İçeren Bağlantılar

Sekiz vezir bulmacası

  • العربية
  • Azərbaycanca
  • Català
  • Čeština
  • Dansk
  • Deutsch
  • English
  • Español
  • فارسی
  • Suomi
  • Français
  • עברית
  • Magyar
  • İtaliano
  • 日本語
  • ქართული
  • 한국어
  • Македонски
  • Nederlands
  • Polski
  • Português
  • Română
  • Русский
  • Slovenščina
  • Српски / srpski
  • தமிழ்
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(8 vezir bulmacası sayfasından yönlendirildi)
abcdefgh
8
d8 beyaz vezir
g7 beyaz vezir
c6 beyaz vezir
h5 beyaz vezir
b4 beyaz vezir
e3 beyaz vezir
a2 beyaz vezir
f1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
8 Vezir Bulmacası'nın örnek bir çözümü

8 Vezir Bulmacası, 8x8'lik bir satranç tahtasına 8 adet vezirin hiçbiri olağan vezir hamleleriyle birbirini alamayacak biçimde yerleştirmesi sorunudur. Her bir vezirin konumunun diğer bir vezire saldırmasına engel olması için hiçbir vezir başka bir vezirle aynı satıra, aynı kolona ya da aynı köşegene yerleştirilemez. 8 Vezir Bulmacası daha genel olan n Vezir Bulmacası'nın özel bir durumudur.

n Vezir Bulmacası, n ≥ 4 için n×n boyutunda bir satranç tahtasına n adet vezirin birbirini alamayacak biçimde yerleştirilmesi sorunudur.

Tarihi

[değiştir | kaynağı değiştir]

8 Vezir Bulmacası (ve genel haliyle n Vezir Bulmacası) ilk olarak 1848 yılında satranç oyuncusu Max Bezzel tarafından ortaya atılmış ve yıllar içinde Gauss ve Georg Cantor gibi pek çok matematikçi tarafından incelenmiştir. İlk çözüm Franz Nauck tarafından 1850'de ortaya atılmıştır. Franz Nauck aynı zamanda bulmacayı nxn'lik bir tahta üzerinde uygulanmak üzere n vezir bulmacası haline getirmiştir.

Edsger Dijkstra 1972 yılında sekiz vezir bulmacası sorununu yapısal programlama adını verdiği yöntemin gücünü göstermek için yarattığı bir algoritmada kullanmıştır.[1]

Çözüm yöntemi

[değiştir | kaynağı değiştir]

Toplamda 283.274.583.,552 (64x63x..x58x57/8!) olasılık bulunmasına karşın yalnızca 92 çözüm bulunduğu için bulmacanın çözümü yüksek miktarda hesaplama gerektirir. Gereksiz yere yapılan hesaplamaların sayısını azaltmak için bazı kısayolların kullanılması mümkündür. Örneğin her bir satırda ya da sütunda tek bir vezirin olabileceği kısıtı uygulanarak çözüm sayısı 16.777.216 (88) düzeyine indirilebilir.

Aşağıdaki adımlar sırasıyla izlenerek n vezir bulmacası'nın bir çözümü bulunabilir:

  1. n sayısını 12'ye böl. Kalanı aklında tut. (n sayısı sekiz vezir bulmacasında 8'dir).
  2. 2'den n sayısına kadar olan bütün çift sayıları sırayla yaz.
  3. Eğer kalan 3 ya da 9 ise 2'yi listenin en sonuna koy.
  4. 1'den n'ye kadar olan tek sayıları listeye ekle; eğer kalan sekizse her bir çiftin kendi arasında yerlerini değiştir (örnek: 3, 1, 7, 5, 11, 9, …).
  5. Eğer kalan 2 ise, 1 ile 3'ün yerlerini değiştir ve 5'i listenin en sonuna al.
  6. Eğer kalan 3 ya da 9 ise, 1 ve 3'ü listenin sonuna al.
  7. Ortaya çıkan listedeki her bir sayı ilgili için ilgili kolonun listedeki sayının gösterdiği satırına bir vezir koy. Örneğin listedeki ilk sayı 2 ise satranç tahtasında ilk kolonun ikinci sırasına bir vezir konmalıdır.

Bazı örnekler

[değiştir | kaynağı değiştir]
  • 14 vezir için liste (kalan 2): 2, 4, 6, 8, 10, 12, 14, 3, 1, 7, 9, 11, 13, 5.
  • 15 vezir için liste (kalan 3): 4, 6, 8, 10, 12, 14, 2, 5, 7, 9, 11, 13, 15, 1, 3.
  • 20 vezir için liste (kalan 8): 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 1, 7, 5, 11, 9, 15, 13, 19, 17.

Çözümleri

[değiştir | kaynağı değiştir]

Sekiz vezir bulmacasının 92 ayrı çözümü vardır. Ancak bu çözümlerin çoğu birbirinden yalnızca döndürme ve yansıma gibi simetri işlemleriyle üretilebilir. Bu nedenle, eğer simetriden doğan bu fazla çözümler birleştirilip tek çözüm olarak sayılırsa, bulmacanın aslında aşağıda gösterilen 12 eşsiz çözümü vardır.

abcdefgh
8
d8 beyaz vezir
g7 beyaz vezir
c6 beyaz vezir
h5 beyaz vezir
b4 beyaz vezir
e3 beyaz vezir
a2 beyaz vezir
f1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 1
abcdefgh
8
e8 beyaz vezir
b7 beyaz vezir
d6 beyaz vezir
g5 beyaz vezir
c4 beyaz vezir
h3 beyaz vezir
f2 beyaz vezir
a1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 2
abcdefgh
8
d8 beyaz vezir
b7 beyaz vezir
g6 beyaz vezir
c5 beyaz vezir
f4 beyaz vezir
h3 beyaz vezir
e2 beyaz vezir
a1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 3
abcdefgh
8
d8 beyaz vezir
f7 beyaz vezir
h6 beyaz vezir
c5 beyaz vezir
a4 beyaz vezir
g3 beyaz vezir
e2 beyaz vezir
b1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 4
abcdefgh
8
c8 beyaz vezir
f7 beyaz vezir
h6 beyaz vezir
a5 beyaz vezir
d4 beyaz vezir
g3 beyaz vezir
e2 beyaz vezir
b1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 5
abcdefgh
8
e8 beyaz vezir
c7 beyaz vezir
h6 beyaz vezir
d5 beyaz vezir
g4 beyaz vezir
a3 beyaz vezir
f2 beyaz vezir
b1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 6
abcdefgh
8
e8 beyaz vezir
g7 beyaz vezir
d6 beyaz vezir
a5 beyaz vezir
c4 beyaz vezir
h3 beyaz vezir
f2 beyaz vezir
b1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 7
abcdefgh
8
d8 beyaz vezir
a7 beyaz vezir
e6 beyaz vezir
h5 beyaz vezir
f4 beyaz vezir
c3 beyaz vezir
g2 beyaz vezir
b1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 8
abcdefgh
8
c8 beyaz vezir
f7 beyaz vezir
d6 beyaz vezir
a5 beyaz vezir
h4 beyaz vezir
e3 beyaz vezir
g2 beyaz vezir
b1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 9
abcdefgh
8
f8 beyaz vezir
b7 beyaz vezir
g6 beyaz vezir
a5 beyaz vezir
d4 beyaz vezir
h3 beyaz vezir
e2 beyaz vezir
c1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 10
abcdefgh
8
d8 beyaz vezir
g7 beyaz vezir
a6 beyaz vezir
h5 beyaz vezir
e4 beyaz vezir
b3 beyaz vezir
f2 beyaz vezir
c1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 11
abcdefgh
8
f8 beyaz vezir
d7 beyaz vezir
g6 beyaz vezir
a5 beyaz vezir
h4 beyaz vezir
b3 beyaz vezir
e2 beyaz vezir
c1 beyaz vezir
8
77
66
55
44
33
22
11
abcdefgh
Eşsiz Çözüm - 12

Değişik n değerleri için çözüm sayıları

[değiştir | kaynağı değiştir]
Özyinelemeli bir algoritmayla Sekiz Vezir Bulmacası'nın Çözümü

Aşağıdaki tablo değişik n değerleri için çözüm sayılarını göstermektedir.

n Eşsiz Çözüm Sayısı Ayrı Çözüm Sayısı
1 1 1
2 0 0
3 0 0
4 1 2
5 2 10
6 1 4
7 6 40
8 12 92
9 46 352
10 92 724
11 341 2.680
12 1.787 14.200
13 9.233 73.712
14 45.752 365.596
15 285.053 2.279.184
16 1.846.955 14.772.512
17 11.977.939 95.815.104
18 83.263.591 666.090.624
19 621.012.754 4.968.057.848
20 4.878.666.808 39.029.188.884
21 39.333.324.973 314.666.222.712
22 336.376.244.042 2.691.008.701.644
23 3.029.242.658.210 24.233.937.684.440
24 28.439.272.956.934 227.514.171.973.736
25 275.986.683.743.434 2.207.893.435.808.352
26 2.789.712.466.510.289 22.317.699.616.364.044
27 29.363.495.934.315.694 234.907.967.154.122.528

Not: 6×6'lık bir satranç tahtasında bulunan çözüm sayısının 5×5 boyutundaki bir satranç tahtasında bulunan çözüm sayısından az oluşu dikkat çekicidir.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare Structured Programming, Academic Press, London, 1972 ISBN 0-12-200550-3 72-82 sayları arasında Dijkstra'nın 8 Vezir bulmacası için önerdiği çözüm bulunmaktadır.

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • An Applet simulating the random-greedy solution for the n-queen problem
  • MathWorld article3 Temmuz 2019 tarihinde Wayback Machine sitesinde arşivlendi.
  • Solutions to the 8-Queens Problem
  • Walter Koster's N-Queens Page
  • Durango Bill's N-Queens Page
  • On-line Guide to Constraint Programming14 Şubat 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • n-Queens in C++; Implementation & analysis of several heuristics to speed up solving the n-queens problem
  • NQueen@home Boinc project

Çözüm İçeren Bağlantılar

[değiştir | kaynağı değiştir]
  • N Queens solutions on Sloane's On-Line Encyclopedia of Integer Sequences13 Mayıs 2001 tarihinde Wayback Machine sitesinde arşivlendi.
  • N Queens solutions achieved on the NQueen@home Boinc project
  • N-Queens solvers in many programming languages
  • A Koalog Constraint Solver model20 Şubat 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Find your own solution12 Mart 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • J Somers N-Queen code
  • Atari BASIC3 Mart 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Genetic algorithms2 Nisan 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Haskell/Java hybrid
  • Java8 Mart 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Java2 Nisan 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Standard ML12 Mart 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Integer Sequences
  • Quirkasaurus' 8 Queens Solution
  • LISP solution for N-Queens Problem15 Nisan 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • ANSI C (recursive, congruence-free NxN-size queens problem solver with conflict heuristics)20 Şubat 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • javascript solution for 8-Queens Problem[ölü/kırık bağlantı]
  • Abhinanth's Simple Javascript application for quick view - chess 8 queen problem
  • Brute-force solution for eight queens in a web based interactive classic BASIC environment17 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Conflict heuristics solution for the eight queens in a web based interactive classic BASIC environment9 Şubat 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • A Simple PHP Solution19 Eylül 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  • Standart C Programlama Dili / Bir Örnek—Sekiz Vezir Problemi17 Ekim 2008 tarihinde Wayback Machine sitesinde arşivlendi.
"https://tr.wikipedia.org/w/index.php?title=Sekiz_vezir_bulmacası&oldid=34487777" sayfasından alınmıştır
Kategoriler:
  • Satranç ve matematik
  • Algoritmalar
Gizli kategoriler:
  • Yinelenen şablon değişkenleri kullanan sayfalar
  • ISBN sihirli bağlantısını kullanan sayfalar
  • Webarşiv şablonu wayback bağlantıları
  • Ölü dış bağlantıları olan maddeler
  • Sayfa en son 23.42, 14 Aralık 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Sekiz vezir bulmacası
Konu ekle